链接:https://ac.nowcoder.com/acm/contest/5758/A
来源:牛客网
题目描述
这里有一棵树,每个点和每条边都存在一个价值。对于树上点对的价值,包括点对的起点和终点以及路径上边权值之和,不包括路径上其他点值。
求这颗树上最大的点对价值为多少。点对至少需要两个点。
输入描述:
输入t,代表有t组样例。每组样例第一行输入n,代表有n个点。接下来有n-1行,第i行有a[i]和b[i],代表a[i]节点与i节点存在一条边,且边的值为b[i],2<=i<=n。接下来一行有n个值c[j],代表每个节点j的价值,1<=j<=n。 (t<=10,n>1,n<1e6,a[i]<i,-500<=b[i]<=500,-500<=c[j]<=500)
输出描述:
输出最大的点对价值
示例1
输入
复制
1
4
1 -2
1 2
1 3
2 -2 3 4
输出
复制
12
推荐大佬博客:https://blog.nowcoder.net/n/dfe65f344b3b4058bc371c602c996175
- dp[u]表示以 u为根节点的子树的最大价值
- ans=max(ans,dp[u]+dp[v]+edgeuv)
- dp[u]=max(dp[u],dp[v]+edgeuv)
#define debug
#ifdef debug
#include <time.h>
#include "/home/majiao/mb.h"
#endif
#include <math.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#define MAXN ((int)1e5 + 7)
#define ll long long int
#define INF (0x7f7f7f7f)
#define fori(lef, rig) for (int i = lef; i <= rig; i++)
#define forj(lef, rig) for (int j = lef; j <= rig; j++)
#define fork(lef, rig) for (int k = lef; k <= rig; k++)
#define QAQ (0)
using namespace std;
#define show(x...) \ do { \ cout << "\033[31;1m " << #x << " -> "; \ err(x); \ } while (0)
void err() { cout << "\033[39;0m" << endl; }
template <typename T, typename... A>
void err(T a, A... x) {
cout << a << ' ';
err(x...);
}
namespace FastIO {
char print_f[105];
void read() {}
void print() { putchar('\n'); }
template <typename T, typename... T2>
inline void read(T &x, T2 &... oth) {
x = 0;
char ch = getchar();
ll f = 1;
while (!isdigit(ch)) {
if (ch == '-') f *= -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - 48;
ch = getchar();
}
x *= f;
read(oth...);
}
template <typename T, typename... T2>
inline void print(T x, T2... oth) {
ll p3 = -1;
if (x < 0) putchar('-'), x = -x;
do {
print_f[++p3] = x % 10 + 48;
} while (x /= 10);
while (p3 >= 0) putchar(print_f[p3--]);
putchar(' ');
print(oth...);
}
} // namespace FastIO
using FastIO::print;
using FastIO::read;
int n, m, Q, K, W[MAXN], dp[MAXN];
struct Edge {
int v, w;
} ;
vector<Edge> G[MAXN];
/* --dp[u] 表示不包括 u 点点权的u到某个子节点的最大价值 dp[u]表示以u为根的树的最大价值 设v为u的某个子节点 ans = max(ans, dp[u]+dp[v]+edge_uv) dp[u] = max(dp[u], dp[v]+edge_uv) */
int ans = 0;
void dfs(int u, int fa) {
dp[u] = W[u];
for(auto ed : G[u]) {
int v = ed.v, tw = ed.w;
if(v == fa) continue ;
dfs(v, u); //先递归子树
ans = max(ans, dp[u]+dp[v]+tw); //注意这里不能W[u]+dp[v]+tw
dp[u] = max(dp[u], dp[v]+tw); //1.只要u点权 2.子状态v+uv边权
}
}
void init() {
ans = -0x3f; //注意不要赋值成0
for(int i=1; i<=n; i++) G[i].clear();
memset(dp, -0x3f, sizeof(dp));
}
int main() {
#ifdef debug
freopen("test", "r", stdin);
clock_t stime = clock();
#endif
read(Q);
while(Q--) {
read(n);
init();
for(int i=1, x, w; i<n; i++) {
read(x, w);
int u = x, v = i+1;
G[u].push_back({v, w}), G[v].push_back({u, w});
}
for(int i=1; i<=n; i++) read(W[i]);
dfs(1, -1);
printf("%d\n", ans);
}
#ifdef debug
clock_t etime = clock();
printf("rum time: %lf 秒\n", (double)(etime - stime) / CLOCKS_PER_SEC);
#endif
return 0;
}