法一:时间复杂度O(n^3)
#include<bits/stdc++.h>
using namespace std;
#define mm(a,x) memset(a,x,sizeof a)
#define mk make_pair
#define ll long long
#define pii pair<int,int>
#define inf 0x3f3f3f3f
#define lowbit(x) (x) & (-x)
/*
*/
const int N = 3010;
int n;
int a[N],b[N];
int f[N][N];
/*
状态表示:f(i,j):a串前i个与b串前j个,以b[j]结尾的max公共长度
状态转移方程:
首先选择公共部分:
不选择a[i],f[i][j] = f[i - 1][j];
选择a[i](a[i] == b[j])
:选择最长
k∈(1,j - 1)求最长上升子序列长度
初始化:
公共(前i个一定包含前i-1): f[i][j] = f[i - 1][j];
上升长度(自身): f[i][j] = 1;
*/
int main() {
cin >> n;
for(int i = 1; i <= n; i ++ ) cin >> a[i];
for(int i = 1; i <= n; i ++ ) cin >> b[i];
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= n; j ++ ){
f[i][j] = f[i - 1][j];
if(a[i] == b[j]){
f[i][j] = 1;
for(int k = 1; k < j; k ++ ){
if(b[k] < b[j]){
f[i][j] = max(f[i][j],f[i][k] + 1);
}
}
}
}
}
int res = 0;
for(int i = 1; i <= n; i ++ ) res = max(res,f[n][i]);
cout<<res;
return 0;
}
法二:时间复杂度:O(n^2)
- maxv是满足a[i] > b[k]的f[i - 1][k] + 1的前缀最大值
- 将maxv提到第一层循环外面,减少重复计算,此时只剩下两重循环
int main() {
cin >> n;
for(int i = 1; i <= n; i ++ ) cin >> a[i];
for(int i = 1; i <= n; i ++ ) cin >> b[i];
for(int i = 1; i <= n; i ++ ){
for(int j = 1; j <= n; j ++ ){
int maxv = 1;
f[i][j] = f[i - 1][j];
if(a[i] == b[j]) maxv = max(maxv,f[i][j]);
if(b[j] < a[i]) maxv = max(maxv,f[i][j] + 1);
}
}
int res = 0;
for(int i = 1; i <= n; i ++ ) res = max(res,f[n][i]);
cout<<res;
return 0;
}