数据库中的锁

 

概述

数据库中的锁

再到MySQL中的锁,对于MySQL来说,锁是一个很重要的特性,数据库的锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性,这样才能保证在高并发的情况下,访问数据库的时候,数据不会出现问题。

1 锁的两个概念

 

在数据库中,lock和latch都可以称为锁,但是意义却不同。

 

Latch一般称为闩锁(轻量级的锁),因为其要求锁定的时间必须非常短。若持续的时间长,则应用的性能会非常差,在InnoDB引擎中,Latch又可以分为mutex(互斥量)和rwlock(读写锁)。其目的是用来保证并发线程操作临界资源的正确性,并且通常没有死锁检测的机制。

 

Lock的对象是事务,用来锁定的是数据库中的对象,如表、页、行。并且一般lock的对象仅在事务commit或rollback后进行释放(不同事务隔离级别释放的时间可能不同)。

2 InnoDB存储引擎中的锁

锁的粒度

在数据库中,锁的粒度的不同可以分为表锁、页锁、行锁,这些锁的粒度之间也是会发生升级的,锁升级的意思就是讲当前锁的粒度降低,数据库可以把一个表的1000个行锁升级为一个页锁,或者将页锁升级为表锁

表锁

表级别的锁定是MySQL各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以很好的避免困扰我们的死锁问题。

当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。

 

使用表级锁定的主要是MyISAM,MEMORY,CSV等一些非事务性存储引擎。

特点: 开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。

页锁

页级锁定是MySQL中比较独特的一种锁定级别,在其他数据库管理软件中也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。
在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源 颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。
使用页级锁定的主要是BerkeleyDB存储引擎。

特点: 开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

行锁

行级锁定最大的特点就是锁定对象的粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。

虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。

特点: 开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

比较表锁我们可以发现,这两种锁的特点基本都是相反的,而从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。

总结

比较表锁我们可以发现,这两种锁的特点基本都是相反的,而从锁的角度来说,表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。

MySQL 不同引擎支持的锁的粒度

锁的类型

S or X (共享锁、排他锁)

数据的操作其实只有两种,也就是读和写,而数据库在实现锁时,也会对这两种操作使用不同的锁;InnoDB 实现了标准的行级锁,也就是共享锁(Shared Lock)和互斥锁(Exclusive Lock)。

共享锁(读锁)(S Lock),允许事务读一行数据。

排他锁(写锁)(X Lock),允许事务删除或更新一行数据。

 

IS or IX (共享、排他)意向锁

为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB存储引擎支持一种额外的锁方式,就称为意向锁,意向锁在 InnoDB 中是表级锁,意向锁分为:

  • 意向共享锁:表达一个事务想要获取一张表中某几行的共享锁。
  • 意向排他锁:表达一个事务想要获取一张表中某几行的排他锁。

另外,这些锁之间的并不是一定可以共存的,有些锁之间是不兼容的,所谓兼容性就是指事务 A 获得一个某行某种锁之后,事务 B 同样的在这个行上尝试获取某种锁,如果能立即获取,则称锁兼容,反之叫冲突。

 

3补充封锁协议

1 封锁类型

在运用S锁和X锁对数据M加锁的时候,需要约定一些规则,例如何时申请S锁或者X锁,持锁时间,这些规则就是封锁协议。其中不同的封锁协议对应不同的隔离级别。

 

排它锁 (X 锁),共享锁 (S 锁)

 

一个事务 T 对数据对象 A 加了 X 锁,T 就可以对 A 进行读取和更新。加锁期间其它事务不能对数据对象 A 加任何其它锁;

 

一个事务 T 对数据对象加了 S 锁,T 可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对数据对象 A 加 S 锁,但是不能加 X 锁。

 

2 封锁粒度

粒度可以是整个数据库,也可以是表,行,或者分量。

 

粒度越小,开销越大。

 

3 封锁协议

1 级封锁协议

缺点:

可能会造成如下后果

丢失更新。

脏读。

不可重复读。

幻读

2 级封锁协议

优点:

1.避免脏读。

缺点:

可能会造成如下后果

丢失更新。

不可重复读。

幻读。

3 级封锁协议

优点:1.避免脏读。2.避免不可重复读。

缺点:1.幻读。2.丢失更新。

4 最强封锁协议

最强封锁协议对应Serialization隔离级别,本质是从MVCC并发控制退化到基于锁的并发控制,对事务中所有读取操作加S锁,写操作加X锁,这样可以避免脏读,不可重复读,幻读,更新丢失,开销也最大,会造成读写冲突,并发程度也最低。

4 两段锁协议

加锁和解锁分为两个阶段进行。两段锁是并行事务可串行化的充分条件,但不是必要条件。

lock-x(A)...lock-s(B)...lock-s(c)...unlock(A)...unlock(C)...unlock(B)

以下正式开始介绍三种锁

4 乐观锁和悲观锁(需要再查 )

 

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。

 

乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。

 

两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。

原理

 

1、乐观锁

 总是认为不会产生并发问题,每次去取数据的时候总认为不会有其他线程对数据进行修改,因此不会上锁,但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用版本号机制或CAS操作实现。

 

 version方式:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。

 

核心SQL代码:

 

update table set x=x+1, version=version+1 where id=#{id} and version=#{version};  

 

 CAS操作方式:即compare and swap 或者 compare and set,涉及到三个操作数,数据所在的内存值,预期值,新值。当需要更新时,判断当前内存值与之前取到的值是否相等,若相等,则用新值更新,若失败则重试,一般情况下是一个自旋操作,即不断的重试。

 

2、悲观锁

 总是假设最坏的情况,每次取数据时都认为其他线程会修改,所以都会加锁(读锁、写锁、行锁等),当其他线程想要访问数据时,都需要阻塞挂起。可以依靠数据库实现,如行锁、读锁和写锁等,都是在操作之前加锁,在Java中,synchronized的思想也是悲观锁。

 

 

5 数据库锁的分类

数据库锁设计的初衷是处理并发问题。作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则。而锁就是用来实现这些访问规则的重要数据结构。

根据加锁的范围,MySQL里面的锁大致可以分成全局锁、表级锁和行锁三类。锁的设计比较复杂,这主要介绍的是碰到锁时的现象和其背后的原理。

1 概述

数据库锁设计的初衷是处理并发问题。作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则。而锁就是用来实现这些访问规则的重要数据结构。

根据加锁的范围,MySQL里面的锁大致可以分成全局锁、表级锁和行锁三类。锁的设计比较复杂,这主要介绍的是碰到锁时的现象和其背后的原理。

6 全局锁

全局锁就是对整个数据库实例加锁。MySQL提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都select出来存成文本。

可能出现的问题

以前有一种做法,是通过FTWRL确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。

但是让整库都只读,听上去就很危险:

  • 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
  • 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的binlog,会导致主从延迟。

,不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。

办法

是的,就是在可重复读隔离级别下开启一个事务。

官方自带工具 mysqldump

官方自带的逻辑备份工具是mysqldump。当mysqldump使用参数–single-transaction的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于MVCC的支持,这个过程中数据是可以正常更新的。

有了这个功能,为什么还需要FTWRL呢?一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于MyISAM这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用FTWRL命令了。

所以,single-transaction方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过FTWRL方法。这往往是DBA要求业务开发人员使用InnoDB替代MyISAM的原因之一。

强烈建议FTWRL方式

既然要全库只读,为什么不使用set global readonly=true的方式呢?确实readonly方式也可以让全库进入只读状态,

 

  • 一是,在有些系统中,readonly的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改global变量的方式影响面更大,我不建议你使用。
  • 二是,在异常处理机制上有差异。如果执行FTWRL命令之后由于客户端发生异常断开,那么MySQL会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为readonly之后,如果客户端发生异常,则数据库就会一直保持readonly状态,这样会导致整个库长时间处于不可写状态,风险较高。

 

业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。

但是,即使没有被全局锁住,加字段也不是就能一帆风顺的,因为你还会碰到接下来我们要介绍的表级锁。

3表级锁

MySQL里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lockMDL)

表锁,

表锁的语法是 lock tables … read/writeFTWRL类似,可以用unlock tables主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程A中执行lock tables t1 read, t2 write; 这个语句,则其他线程写t1、读写t2的语句都会被阻塞。同时,线程A在执行unlock tables之前,也只能执行读t1、读写t2的操作。连写t1都不允许,自然也不能访问其他表。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于InnoDB这种支持行锁的引擎,一般不使用lock tables命令来控制并发,毕竟锁住整个表的影响面还是太大。

元数据锁

MDL不需要显式使用,在访问一个表的时候会被自动加上。MDL的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在MySQL 5.5版本中引入了MDL,当对一个表做增删改查操作的时候,加MDL读锁;当要对表做结构变更操作的时候,加MDL写锁。

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

安全问题

虽然MDL锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。

你肯定知道,给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,你肯定会特别小心,以免对线上服务造成影响。而实际上,即使是小表,操作不慎也会出问题。我们来看一下下面的操作序列,假设表t是一个小表。

备注:这里的实验环境是MySQL 5.6

我们可以看到session A先启动,这时候会对表t加一个MDL读锁。由于session B需要的也是MDL读锁,因此可以正常执行。

之后session C会被blocked,是因为session AMDL读锁还没有释放,而session C需要MDL写锁,因此只能被阻塞。

如果只有session C自己被阻塞还没什么关系,但是之后所有要在表t上新申请MDL读锁的请求也会被session C阻塞。前面我们说了,所有对表的增删改查操作都需要先申请MDL读锁,就都被锁住,等于这个表现在完全不可读写了。

如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新session再请求的话,这个库的线程很快就会爆满。

你现在应该知道了,事务中的MDL锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

如何安全地给小表加字段?

首先我们要解决长事务,事务不提交,就会一直占着MDL锁。在MySQLinformation_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做DDL变更的表刚好有长事务在执行,要考虑先暂停DDL,或者kill掉这个长事务。

。如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?

这时候kill可能未必管用,因为新的请求马上就来了。比较理想的机制是,在alter table语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到MDL写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者DBA再通过重试命令重复这个过程。

MariaDB已经合并了AliSQL的这个功能,所以这两个开源分支目前都支持DDL NOWAIT/WAIT n这个语法。

ALTER TABLE tbl_name NOWAIT add column ...

ALTER TABLE tbl_name WAIT N add column ...

4 全局锁和表锁小结

全局锁主要用在逻辑备份过程中。对于全部是InnoDB引擎的库,我建议你选择使用–single-transaction参数,对应用会更友好。

表锁一般是在数据库引擎不支持行锁的时候才会被用到的。如果你发现你的应用程序里有lock tables这样的语句,你需要追查一下,比较可能的情况是:

  • 要么是你的系统现在还在用MyISAM这类不支持事务的引擎,那要安排升级换引擎;
  • 要么是你的引擎升级了,但是代码还没升级。我见过这样的情况,最后业务开发就是把lock tables 和 unlock tables 改成 begin 和 commit,问题就解决了。

MDL会直到事务提交才释放,在做表结构变更的时候,你一定要小心不要导致锁住线上查询和更新。

5 行锁

MySQL的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如MyISAM引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB是支持行锁的,这也是MyISAMInnoDB替代的重要原因之一。

如何通过减少锁冲突来提升业务并发度。

(1)两阶段锁协议

行锁就是针对数据表中行记录的锁。这很好理解,比如事务A更新了一行,而这时候事务B也要更新同一行,则必须等事务A的操作完成后才能进行更新。

InnoDB事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

(2)死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。

这时候,事务A在等待事务B释放id=2的行锁,而事务B在等待事务A释放id=1的行锁。 事务A和事务B在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

(3)解决办法

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数innodb_deadlock_detect设置为on,表示开启这个逻辑。

InnoDB中,innodb_lock_wait_timeout的默认值是50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过50s才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。

进入等待策略出现的问题

但是,我们又不可能直接把这个时间设置成一个很小的值,比如1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。

所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且innodb_deadlock_detect的默认值本身就是on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。

主动死锁检测出现的问题

每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。

那如果是我们上面说到的所有事务都要更新同一行的场景呢?

每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是O(n)的操作。假设有1000个并发线程要同时更新同一行,那么死锁检测操作就是100万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的CPU资源。因此,你就会看到CPU利用率很高,但是每秒却执行不了几个事务。

根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢?问题的症结在于,死锁检测要耗费大量的CPU资源。

主动死锁检测解决办法

1 一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

2 另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有10个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有600个客户端,这样即使每个客户端控制到只有5个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到3000

因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改MySQL源码的人,也可以做在MySQL里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在InnoDB内部就不会有大量的死锁检测工作了。

你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如10个记录,影院的账户总额等于这10个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的1/10,可以减少锁等待个数,也就减少了死锁检测的CPU消耗。

这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成0的时候,代码要有特殊处理。

(4)行锁小结

MySQL的行锁,涉及了两阶段锁协议、死锁和死锁检测这两大部分内容。

其中,我以两阶段协议为起点,和你一起讨论了在开发的时候如何安排正确的事务语句。这里的原则/我给你的建议是:如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁的申请时机尽量往后放。

但是,调整语句顺序并不能完全避免死锁。所以我们引入了死锁和死锁检测的概念,以及提供了三个方案,来减少死锁对数据库的影响。减少死锁的主要方向,就是控制访问相同资源的并发事务量。

6 问题

问题1 (暂时不懂)

当备库用–single-transaction做逻辑备份的时候,如果从主库的binlog传来一个DDL语句会怎么样?

在备份开始的时候,为了确保RR(可重复读)隔离级别,再设置一次RR隔离级别(Q1);

启动事务,这里用 WITH CONSISTENT SNAPSHOT确保这个语句执行完就可以得到一个一致性视图(Q2);

设置一个保存点,这个很重要(Q3);

show create 是为了拿到表结构(Q4),然后正式导数据 (Q5),回滚到SAVEPOINT sp,在这里的作用是释放 t1的MDL锁 (Q6。当然这部分属于“超纲”,上文正文里面都没提到。

DDL从主库传过来的时间按照效果不同,我打了四个时刻。题目设定为小表,我们假定到达后,如果开始执行,则很快能够执行完成。

问题2

。如果你要删除一个表里面的前10000行数据,有以下三种方法可以做到:

  • 第一种,直接执行delete from T limit 10000;
  • 第二种,在一个连接中循环执行20次 delete from T limit 500;
  • 第三种,在20个连接中同时执行delete from T limit 500。

你会选择哪一种方法呢?为什么呢?

第二种方式是相对较好的。

第一种方式(即:直接执行delete from T limit 10000)里面,单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟。

第三种方式(即:在20个连接中同时执行delete from T limit 500),会人为造成锁冲突。