文章目录
饼图
# %%
# 饼图的绘制
# 导入第三方模块
import matplotlib.pyplot as plt
# 构造数据
edu = [0.2515, 0.3724, 0.3336, 0.0368, 0.0057]
labels = ['中专', '大专', '本科', '硕士', '其他']
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 绘制饼图
plt.pie(x=edu, # 绘图数据
labels=labels, # 添加教育水平标签
autopct='%.1f%%' # 设置百分比的格式,这里保留一位小数
)
# 添加图标题
plt.title('失信用户的教育水平分布')
# 显示图形
plt.show()
# %%
# 添加修饰的饼图
explode = [0, 0.1, 0, 0, 0] # 生成数据,用于突出显示大专学历人群
# 自定义颜色,英文单词也可以
colors = ['#9999ff', '#ff9999', '#7777aa', '#2442aa', '#dd5555']
# 中文乱码和坐标轴负号的处理
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 将横、纵坐标轴标准化处理,确保饼图是一个正圆,否则为椭圆
plt.axes(aspect='equal')
# 绘制饼图
plt.pie(x=edu, # 绘图数据
explode=explode, # 突出显示大专人群
labels=labels, # 添加教育水平标签
colors=colors, # 设置饼图的自定义填充色
autopct='%.1f%%', # 设置百分比的格式,这里保留一位小数
pctdistance=0.8, # 设置百分比标签与圆心的距离
labeldistance=1.1, # 设置教育水平标签与圆心的距离
startangle=180, # 设置饼图的初始角度
radius=1.2, # 设置饼图的半径
counterclock=False, # 是否逆时针,这里设置为顺时针方向
wedgeprops={
'linewidth': 1.5, 'edgecolor': 'green'}, # 设置饼图内外边界的属性值
textprops={
'fontsize': 10, 'color': 'black'}, # 设置文本标签的属性值
)
# 添加图标题
plt.title('失信用户的受教育水平分布')
# 显示图形
plt.show()
# %%
# 导入第三方模块
import pandas as pd
# 构建序列
data1 = pd.Series({
'中专': 0.2515, '大专': 0.3724, '本科': 0.3336, '硕士': 0.0368, '其他': 0.0057})
# 将序列的名称设置为空字符,否则绘制的饼图左边会出现None这样的字眼
data1.name = ''
# 控制饼图为正圆
plt.axes(aspect='equal')
# plot方法对序列进行绘图
data1.plot(kind='pie', # 选择图形类型
autopct='%.1f%%', # 饼图中添加数值标签
radius=1, # 设置饼图的半径
startangle=180, # 设置饼图的初始角度
counterclock=False, # 将饼图的顺序设置为顺时针方向
title='失信用户的受教育水平分布', # 为饼图添加标题
wedgeprops={
'linewidth': 1.5, 'edgecolor': 'green'}, # 设置饼图内外边界的属性值
textprops={
'fontsize': 10, 'color': 'black'} # 设置文本标签的属性值
)
# 显示图形
plt.show()
垂直条形图
# %%
# 条形图的绘制--垂直条形图
# 读入数据
GDP = pd.read_excel(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\Province GDP 2017.xlsx')
# 设置绘图风格(不妨使用R语言中的ggplot2风格)
plt.style.use('ggplot')
# 绘制条形图
plt.bar(x=range(GDP.shape[0]), # 指定条形图x轴的刻度值
height=GDP.GDP, # 指定条形图y轴的数值
tick_label=GDP.Province, # 指定条形图x轴的刻度标签
color='steelblue', # 指定条形图的填充色
)
# 添加y轴的标签
plt.ylabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for x, y in enumerate(GDP.GDP):
plt.text(x, y + 0.1, '%s' % round(y, 1), ha='center')
# 显示图形
plt.show()
水平条形图
# %%
# 条形图的绘制--水平条形图
# 对读入的数据作升序排序
GDP.sort_values(by='GDP', inplace=True)
# 绘制条形图
plt.barh(y=range(GDP.shape[0]), # 指定条形图y轴的刻度值
width=GDP.GDP, # 指定条形图x轴的数值
tick_label=GDP.Province, # 指定条形图y轴的刻度标签
color='steelblue', # 指定条形图的填充色
)
# 添加x轴的标签
plt.xlabel('GDP(万亿)')
# 添加条形图的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for y, x in enumerate(GDP.GDP):
plt.text(x + 0.1, y, '%s' % round(x, 1), va='center')
# 显示图形
plt.show()
堆叠条形图
# %%
# 条形图的绘制--堆叠条形图
# 读入数据
Industry_GDP = pd.read_excel(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\Industry_GDP.xlsx')
# 取出四个不同的季度标签,用作堆叠条形图x轴的刻度标签
Quarters = Industry_GDP.Quarter.unique()
# 取出第一产业的四季度值
Industry1 = Industry_GDP.GPD[Industry_GDP.Industry_Type == '第一产业']
# 重新设置行索引
Industry1.index = range(len(Quarters))
# 取出第二产业的四季度值
Industry2 = Industry_GDP.GPD[Industry_GDP.Industry_Type == '第二产业']
# 重新设置行索引
Industry2.index = range(len(Quarters))
# 取出第三产业的四季度值
Industry3 = Industry_GDP.GPD[Industry_GDP.Industry_Type == '第三产业']
# 绘制堆叠条形图
# 各季度下第一产业的条形图
plt.bar(x=range(len(Quarters)), height=Industry1, color='steelblue', label='第一产业', tick_label=Quarters)
# 各季度下第二产业的条形图
plt.bar(x=range(len(Quarters)), height=Industry2, bottom=Industry1, color='green', label='第二产业')
# 各季度下第三产业的条形图
plt.bar(x=range(len(Quarters)), height=Industry3, bottom=Industry1 + Industry2, color='red', label='第三产业')
# 添加y轴标签
plt.ylabel('生成总值(亿)')
# 添加图形标题
plt.title('2017年各季度三产业总值')
# 显示各产业的图例
plt.legend()
# 显示图形
plt.show()
水平交错条形图
# %%
# 条形图的绘制--水平交错条形图
# 导入第三方模块
import numpy as np
# 读入数据
HuRun = pd.read_excel(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第5章 Python数据处理工具--Pandas\HuRun.xlsx')
# 取出城市名称
Cities = HuRun.City.unique()
# 取出2016年各城市亿万资产家庭数
Counts2016 = HuRun.Counts[HuRun.Year == 2016]
# 取出2017年各城市亿万资产家庭数
Counts2017 = HuRun.Counts[HuRun.Year == 2017]
# 绘制水平交错条形图
bar_width = 0.4
plt.bar(x=np.arange(len(Cities)), height=Counts2016, label='2016', color='steelblue', width=bar_width)
plt.bar(x=np.arange(len(Cities)) + bar_width, height=Counts2017, label='2017', color='indianred', width=bar_width)
# 添加刻度标签(向右偏移0.225)
plt.xticks(np.arange(5) + 0.2, Cities)
# 添加y轴标签
plt.ylabel('亿万资产家庭数')
# 添加图形标题
plt.title('近两年5个城市亿万资产家庭数比较')
# 添加图例
plt.legend()
# 显示图形
plt.show()
pandas模块之垂直或水平条形图
# %%
# 绘图(此时的数据集在前文已经按各省GDP做过升序处理)
GDP.GDP.plot(kind='bar', width=0.8, rot=0, color='steelblue', title='2017年度6个省份GDP分布')
# 添加y轴标签
plt.ylabel('GDP(万亿)')
# 添加x轴刻度标签
plt.xticks(range(len(GDP.Province)), # 指定刻度标签的位置
GDP.Province # 指出具体的刻度标签值
)
# 为每个条形图添加数值标签
for x, y in enumerate(GDP.GDP):
plt.text(x - 0.1, y + 0.2, '%s' % round(y, 1), va='center')
# 显示图形
plt.show()
pandas模块之水平交错条形图
# %%
HuRun_reshape = HuRun.pivot_table(index='City', columns='Year', values='Counts').reset_index()
# 对数据集降序排序
HuRun_reshape.sort_values(by=2016, ascending=False, inplace=True)
HuRun_reshape.plot(x='City', y=[2016, 2017], kind='bar', color=['steelblue', 'indianred'],
rot=0, # 用于旋转x轴刻度标签的角度,0表示水平显示刻度标签
width=0.8, title='近两年5个城市亿万资产家庭数比较')
# 添加y轴标签
plt.ylabel('亿万资产家庭数')
plt.xlabel('')
plt.show()
seaborn模块之垂直或水平条形图
# %%
# 导入第三方模块
import seaborn as sns
sns.barplot(y='Province', # 指定条形图x轴的数据
x='GDP', # 指定条形图y轴的数据
data=GDP, # 指定需要绘图的数据集
color='steelblue', # 指定条形图的填充色
orient='horizontal' # 将条形图水平显示
)
# 重新设置x轴和y轴的标签
plt.xlabel('GDP(万亿)')
plt.ylabel('')
# 添加图形的标题
plt.title('2017年度6个省份GDP分布')
# 为每个条形图添加数值标签
for y, x in enumerate(GDP.GDP):
plt.text(x, y, '%s' % round(x, 1), va='center')
# 显示图形
plt.show()
pandas模块之水平交错条形图
# %%
import pandas as pd
# 读入数据
Titanic = pd.read_csv(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\titanic_train.csv')
# 绘制水平交错条形图
sns.barplot(x='Pclass', # 指定x轴数据
y='Age', # 指定y轴数据
hue='Sex', # 指定分组数据
data=Titanic, # 指定绘图数据集
palette='RdBu', # 指定男女性别的不同颜色
errcolor='blue', # 指定误差棒的颜色
errwidth=2, # 指定误差棒的线宽
saturation=1, # 指定颜色的透明度,这里设置为无透明度
capsize=0.05 # 指定误差棒两端线条的宽度
)
# 添加图形标题
plt.title('各船舱等级中男女乘客的年龄差异')
# 显示图形
plt.show()
matplotlib模块之直方图
# %%
# 检查年龄是否有缺失
any(Titanic.Age.isnull())
# 不妨删除含有缺失年龄的观察
Titanic.dropna(subset=['Age'], inplace=True)
# 绘制直方图
plt.hist(x=Titanic.Age, # 指定绘图数据
bins=20, # 指定直方图中条块的个数
color='steelblue', # 指定直方图的填充色
edgecolor='black' # 指定直方图的边框色
)
# 添加x轴和y轴标签
plt.xlabel('年龄')
plt.ylabel('频数')
# 添加标题
plt.title('乘客年龄分布')
# 显示图形
plt.show()
pandas模块之直方图和核密度图
# %%
# 绘制直方图
Titanic.Age.plot(kind='hist', bins=20, color='steelblue', edgecolor='black', density=True, label='直方图')
# 绘制核密度图
Titanic.Age.plot(kind='kde', color='red', label='核密度图')
# 添加x轴和y轴标签
plt.xlabel('年龄')
plt.ylabel('核密度值')
# 添加标题
plt.title('乘客年龄分布')
# 显示图例
plt.legend()
# 显示图形
plt.show()
seaborn模块之分组的直方图和核密度图
# %%
# 取出男性年龄
Age_Male = Titanic.Age[Titanic.Sex == 'male']
# 取出女性年龄
Age_Female = Titanic.Age[Titanic.Sex == 'female']
# 绘制男女乘客年龄的直方图
sns.distplot(Age_Male, bins=20, kde=False, hist_kws={
'color': 'steelblue'}, label='男性')
# 绘制女性年龄的直方图
sns.distplot(Age_Female, bins=20, kde=False, hist_kws={
'color': 'purple'}, label='女性')
plt.title('男女乘客的年龄直方图')
# 显示图例
plt.legend()
# 显示图形
plt.show()
# 绘制男女乘客年龄的核密度图
sns.distplot(Age_Male, hist=False, kde_kws={
'color': 'red', 'linestyle': '-'},
norm_hist=True, label='男性')
# 绘制女性年龄的核密度图
sns.distplot(Age_Female, hist=False, kde_kws={
'color': 'black', 'linestyle': '--'},
norm_hist=True, label='女性')
plt.title('男女乘客的年龄核密度图')
# 显示图例
plt.legend()
# 显示图形
plt.show()
单个箱线图
# %%
# 读取数据
Sec_Buildings = pd.read_excel(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\sec_buildings.xlsx')
# 绘制箱线图
plt.boxplot(x=Sec_Buildings.price_unit, # 指定绘图数据
patch_artist=True, # 要求用自定义颜色填充盒形图,默认白色填充
showmeans=True, # 以点的形式显示均值
boxprops={
'color': 'black', 'facecolor': 'steelblue'}, # 设置箱体属性,如边框色和填充色
# 设置异常点属性,如点的形状、填充色和点的大小
flierprops={
'marker': 'o', 'markerfacecolor': 'red', 'markersize': 3},
# 设置均值点的属性,如点的形状、填充色和点的大小
meanprops={
'marker': 'D', 'markerfacecolor': 'indianred', 'markersize': 4},
# 设置中位数线的属性,如线的类型和颜色
medianprops={
'linestyle': '--', 'color': 'orange'},
labels=[''] # 删除x轴的刻度标签,否则图形显示刻度标签为1
)
# 添加图形标题
plt.title('二手房单价分布的箱线图')
# 显示图形
plt.show()
分组箱线图
# %%
# 二手房在各行政区域的平均单价
group_region = Sec_Buildings.groupby('region')
avg_price = group_region.aggregate({
'price_unit': np.mean}).sort_values('price_unit', ascending=False)
# 通过循环,将不同行政区域的二手房存储到列表中
region_price = []
for region in avg_price.index:
region_price.append(Sec_Buildings.price_unit[Sec_Buildings.region == region])
# 绘制分组箱线图
plt.boxplot(x=region_price,
patch_artist=True,
labels=avg_price.index, # 添加x轴的刻度标签
showmeans=True,
boxprops={
'color': 'black', 'facecolor': 'steelblue'},
flierprops={
'marker': 'o', 'markerfacecolor': 'red', 'markersize': 3},
meanprops={
'marker': 'D', 'markerfacecolor': 'indianred', 'markersize': 4},
medianprops={
'linestyle': '--', 'color': 'orange'}
)
# 添加y轴标签
plt.ylabel('单价(元)')
# 添加标题
plt.title('不同行政区域的二手房单价对比')
# 显示图形
plt.show()
# %%
# 绘制分组箱线图
sns.boxplot(x='region', y='price_unit', data=Sec_Buildings,
order=avg_price.index, showmeans=True, color='steelblue',
flierprops={
'marker': 'o', 'markerfacecolor': 'red', 'markersize': 3},
meanprops={
'marker': 'D', 'markerfacecolor': 'indianred', 'markersize': 4},
medianprops={
'linestyle': '--', 'color': 'orange'}
)
# 更改x轴和y轴标签
plt.xlabel('')
plt.ylabel('单价(元)')
# 添加标题
plt.title('不同行政区域的二手房单价对比')
# 显示图形
plt.show()
小提琴图
# %%
# 读取数据
tips = pd.read_csv(r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\tips.csv')
# 绘制分组小提琴图
sns.violinplot(x="total_bill", # 指定x轴的数据
y="day", # 指定y轴的数据
hue="sex", # 指定分组变量
data=tips, # 指定绘图的数据集
order=['Thur', 'Fri', 'Sat', 'Sun'], # 指定x轴刻度标签的顺序
scale='count', # 以男女客户数调节小提琴图左右的宽度
split=True, # 将小提琴图从中间割裂开,形成不同的密度曲线;
palette='RdBu' # 指定不同性别对应的颜色(因为hue参数为设置为性别变量)
)
# 添加图形标题
plt.title('每天不同性别客户的消费额情况')
# 设置图例
plt.legend(loc='upper center', ncol=2)
# 显示图形
plt.show()
单条折线图
# %%
# 数据读取
wechat = pd.read_excel(r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\wechat.xlsx')
# 绘制单条折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle='-', # 折线类型
linewidth=2, # 折线宽度
color='steelblue', # 折线颜色
marker='o', # 折线图中添加圆点
markersize=6, # 点的大小
markeredgecolor='black', # 点的边框色
markerfacecolor='brown') # 点的填充色
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数趋势')
# 显示图形
plt.show()
多条折线图
# %%
# 导入模块,用于日期刻度的修改
import matplotlib as mpl
# 绘制阅读人数折线图
plt.plot(wechat.Date, # x轴数据
wechat.Counts, # y轴数据
linestyle='-', # 折线类型,实心线
color='steelblue', # 折线颜色
label='阅读人数'
)
# 绘制阅读人次折线图
plt.plot(wechat.Date, # x轴数据
wechat.Times, # y轴数据
linestyle='--', # 折线类型,虚线
color='indianred', # 折线颜色
label='阅读人次'
)
# 获取图的坐标信息
ax = plt.gca()
# 设置日期的显示格式
date_format = mpl.dates.DateFormatter("%m-%d")
ax.xaxis.set_major_formatter(date_format)
# 设置x轴显示多少个日期刻度
# xlocator = mpl.ticker.LinearLocator(10)
# 设置x轴每个刻度的间隔天数
xlocator = mpl.ticker.MultipleLocator(7)
ax.xaxis.set_major_locator(xlocator)
# 为了避免x轴刻度标签的紧凑,将刻度标签旋转45度
plt.xticks(rotation=45)
# 添加y轴标签
plt.ylabel('人数')
# 添加图形标题
plt.title('每天微信文章阅读人数与人次趋势')
# 添加图例
plt.legend()
# 显示图形
plt.show()
# %%
# 读取天气数据
weather = pd.read_excel(r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\weather.xlsx')
# 统计每月的平均最高气温
data = weather.pivot_table(index='month', columns='year', values='high')
# 绘制折线图
data.plot(kind='line',
style=['-', '--', ':'] # 设置折线图的线条类型
)
# 修改x轴和y轴标签
plt.xlabel('月份')
plt.ylabel('气温')
# 添加图形标题
plt.title('每月平均最高气温波动趋势')
# 显示图形
plt.show()
pandas模块之单组散点图
# %%
# 读入数据
iris = pd.read_csv(r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\iris.csv')
# 绘制散点图
plt.scatter(x=iris.Petal_Width, # 指定散点图的x轴数据
y=iris.Petal_Length, # 指定散点图的y轴数据
color='steelblue' # 指定散点图中点的颜色
)
# 添加x轴和y轴标签
plt.xlabel('花瓣宽度')
plt.ylabel('花瓣长度')
# 添加标题
plt.title('鸢尾花的花瓣宽度与长度关系')
# 显示图形
plt.show()
# %%
# 绘制散点图
iris.plot(x='Petal_Width', y='Petal_Length', kind='scatter', title='鸢尾花的花瓣宽度与长度关系')
# 修改x轴和y轴标签
plt.xlabel('花瓣宽度')
plt.ylabel('花瓣长度')
# 显示图形
plt.show()
seaborn模块之分组散点图
# %%
sns.lmplot(x='Petal_Width', # 指定x轴变量
y='Petal_Length', # 指定y轴变量
hue='Species', # 指定分组变量
data=iris, # 指定绘图数据集
legend_out=False, # 将图例呈现在图框内
truncate=True # 根据实际的数据范围,对拟合线作截断操作
)
# 修改x轴和y轴标签
plt.xlabel('花瓣宽度')
plt.ylabel('花瓣长度')
# 添加标题
plt.title('鸢尾花的花瓣宽度与长度关系')
# 显示图形
plt.show()
气泡图
# %%
# 读取数据
Prod_Category = pd.read_excel(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\SuperMarket.xlsx')
# 将利润率标准化到[0,1]之间(因为利润率中有负数),然后加上微小的数值0.001
range_diff = Prod_Category.Profit_Ratio.max() - Prod_Category.Profit_Ratio.min()
Prod_Category['std_ratio'] = (Prod_Category.Profit_Ratio - Prod_Category.Profit_Ratio.min()) / range_diff + 0.001
# 绘制办公用品的气泡图
plt.scatter(x=Prod_Category.Sales[Prod_Category.Category == '办公用品'],
y=Prod_Category.Profit[Prod_Category.Category == '办公用品'],
s=Prod_Category.std_ratio[Prod_Category.Category == '办公用品'] * 1000,
color='steelblue', label='办公用品', alpha=0.6
)
# 绘制技术产品的气泡图
plt.scatter(x=Prod_Category.Sales[Prod_Category.Category == '技术产品'],
y=Prod_Category.Profit[Prod_Category.Category == '技术产品'],
s=Prod_Category.std_ratio[Prod_Category.Category == '技术产品'] * 1000,
color='indianred', label='技术产品', alpha=0.6
)
# 绘制家具产品的气泡图
plt.scatter(x=Prod_Category.Sales[Prod_Category.Category == '家具产品'],
y=Prod_Category.Profit[Prod_Category.Category == '家具产品'],
s=Prod_Category.std_ratio[Prod_Category.Category == '家具产品'] * 1000,
color='black', label='家具产品', alpha=0.6
)
# 添加x轴和y轴标签
plt.xlabel('销售额')
plt.ylabel('利润')
# 添加标题
plt.title('销售额、利润及利润率的气泡图')
# 添加图例
plt.legend()
# 显示图形
plt.show()
热力图
# %%
# 读取数据
Sales = pd.read_excel(r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\Sales.xlsx')
# 根据交易日期,衍生出年份和月份字段
Sales['year'] = Sales.Date.dt.year
Sales['month'] = Sales.Date.dt.month
# 统计每年各月份的销售总额
Summary = Sales.pivot_table(index='month', columns='year', values='Sales', aggfunc=np.sum)
# 绘制热力图
sns.heatmap(data=Summary, # 指定绘图数据
cmap='PuBuGn', # 指定填充色
linewidths=.1, # 设置每个单元格边框的宽度
annot=True, # 显示数值
fmt='.1e' # 以科学计算法显示数据
)
# 添加标题
plt.title('每年各月份销售总额热力图')
# 显示图形
plt.show()
# %%
# 读取数据
Prod_Trade = pd.read_excel(
r'E:\PyCharmProject\venv\StataAnalysis_Files\从零开始学Python--数据分析与挖掘\第6章 Python数据可视化\Prod_Trade.xlsx')
# 衍生出交易年份和月份字段
Prod_Trade['year'] = Prod_Trade.Date.dt.year
Prod_Trade['month'] = Prod_Trade.Date.dt.month
# 设置大图框的长和高
plt.figure(figsize=(12, 6))
# 设置第一个子图的布局
ax1 = plt.subplot2grid(shape=(2, 3), loc=(0, 0))
# 统计2012年各订单等级的数量
Class_Counts = Prod_Trade.Order_Class[Prod_Trade.year == 2012].value_counts()
Class_Percent = Class_Counts / Class_Counts.sum()
# 将饼图设置为圆形(否则有点像椭圆)
ax1.set_aspect(aspect='equal')
# 绘制订单等级饼图
ax1.pie(x=Class_Percent.values, labels=Class_Percent.index, autopct='%.1f%%')
# 添加标题
ax1.set_title('各等级订单比例')
# 设置第二个子图的布局
ax2 = plt.subplot2grid(shape=(2, 3), loc=(0, 1))
# 统计2012年每月销售额
Month_Sales = Prod_Trade[Prod_Trade.year == 2012].groupby(by='month').aggregate({
'Sales': np.sum})
# 绘制销售额趋势图
Month_Sales.plot(title='2012年各月销售趋势', ax=ax2, legend=False)
# 删除x轴标签
ax2.set_xlabel('')
# 设置第三个子图的布局
ax3 = plt.subplot2grid(shape=(2, 3), loc=(0, 2), rowspan=2)
# 绘制各运输方式的成本箱线图
sns.boxplot(x='Transport', y='Trans_Cost', data=Prod_Trade, ax=ax3)
# 添加标题
ax3.set_title('各运输方式成本分布')
# 删除x轴标签
ax3.set_xlabel('')
# 修改y轴标签
ax3.set_ylabel('运输成本')
# 设置第四个子图的布局
ax4 = plt.subplot2grid(shape=(2, 3), loc=(1, 0), colspan=2)
# 2012年客单价分布直方图
sns.distplot(Prod_Trade.Sales[Prod_Trade.year == 2012], bins=40, norm_hist=True, ax=ax4,
hist_kws={
'color': 'steelblue'}, kde_kws=({
'linestyle': '--', 'color': 'red'}))
# 添加标题
ax4.set_title('2012年客单价分布图')
# 修改x轴标签
ax4.set_xlabel('销售额')
# 调整子图之间的水平间距和高度间距
plt.subplots_adjust(hspace=0.6, wspace=0.3)
# 图形显示
plt.show()
词云分词
import jieba
import wordcloud
text = open(r'text.txt',encoding='utf-8').read()
def split_words(text):
cut_text = jieba.cut(text)
string = ','.join(cut_text)
stop_words = ['我们', '你们',]
word_cloud = wordcloud.WordCloud(
font_path=r'.\simhei.ttf',
background_color='white',
width=500,
height=350,
max_font_size=100,
min_font_size=10,
stopwords=stop_words,
scale=15,
)
word_cloud.generate(string)
word_cloud.to_file(r'词云分词.png')
split_words(text=text)