就是长这个样子的:
a n + 1 =pa n +q
a 0 = 0
比如:a n + 1 =2a n +1
这种就是我们高中的时候学的差比数列嘛φ(>ω<*)

但我们现在用生成函数来弄一弄:
令f(x)=a 0 +a 1 x+a 2 x+…..+a n x
即:
f(x)= <munderover> n = 0 </munderover> a n x n

= <munderover> n = 1 </munderover> (pa n 1 +q)x n

= <munderover> n = 1 </munderover> (pa n 1 )x n + <munderover> n = 1 </munderover> qx n

=px <munderover> n = 1 </munderover> (a n 1 )x n 1 +q( <munderover> n = 0 </munderover> x n -x 0 )

=px f(x)+q( 1 1 x -1)

=px f(x)+q( x 1 x )

所以:f(x)= q x ( 1 x ) ( 1 p x )

然后再拆开
f(x)= q 1 p ( 1 x ) + q p 1 ( 1 p x )

= <munderover> n = 0 </munderover> q 1 p x n + <munderover> n = 0 </munderover> q p 1 (px) n

= <munderover> n = 0 </munderover> ( q 1 p + q p 1 q n )x n

里面那一坨就是a n
即:
a n = q 1 p + q p 1 q n

所以:a n + 1 =2a n +1的通项公式就是当p=2,q=1的时候了

a n =2 n -1

( ̄▽ ̄)~*