package java.util;
import java.lang.reflect.Array;
import java.util.concurrent.ForkJoinPool;
import java.util.function.BinaryOperator;
import java.util.function.Consumer;
import java.util.function.DoubleBinaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntFunction;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.LongBinaryOperator;
import java.util.function.UnaryOperator;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
////提供排序,并行排序,流,并行流的工具方法,并行执行函数接口的静态方法
// Sort ,
//去除了重载函数(意义相同,只是类型不同)
public class Arrays {
    /**
     * The minimum array length below which a parallel sorting
     * algorithm will not further partition the sorting task. Using
     * smaller sizes typically results in memory contention across
     * tasks that makes parallel speedups unlikely.
     */
    private static final int MIN_ARRAY_SORT_GRAN = 1 << 13;
    // Suppresses default constructor, ensuring non-instantiability.
    private Arrays(){}
    //用于排序的内部类,自然顺序
    static final class NaturalOrder implements Comparator<Object> {
        @SuppressWarnings("unchecked")
        public int compare(Object first, Object second){
            return ((Comparable<Object>) first).compareTo(second);
        }

        static final NaturalOrder INSTANCE = new NaturalOrder();
    }
    //检查数组越界
    private static void rangeCheck(int arrayLength, int fromIndex, int toIndex){
        if(fromIndex > toIndex){
            throw new IllegalArgumentException(
                    "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
        }
        if(fromIndex < 0){
            throw new ArrayIndexOutOfBoundsException(fromIndex);
        }
        if(toIndex > arrayLength){
            throw new ArrayIndexOutOfBoundsException(toIndex);
        }
    }

    // 使用DualPivotQuicksort 快排排序,去除了其他类型的重载 **********************//
    public static void sort(int[] a){
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    public static void sort(int[] a, int fromIndex, int toIndex){
        rangeCheck(a.length, fromIndex, toIndex);
        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
    }

    //并行排序,通过ForkJoinPool实现并行排序
    public static void parallelSort(long[] a){
        int n = a.length, p, g;
        if(n <= MIN_ARRAY_SORT_GRAN ||
           (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
        else
            new ArraysParallelSortHelpers.FJLong.Sorter
                    (null, a, new long[n], 0, n, 0,
                     ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                             MIN_ARRAY_SORT_GRAN : g).invoke();
    }
    public static void parallelSort(long[] a, int fromIndex, int toIndex){
        rangeCheck(a.length, fromIndex, toIndex);
        int n = toIndex - fromIndex, p, g;
        if(n <= MIN_ARRAY_SORT_GRAN ||
           (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
        else
            new ArraysParallelSortHelpers.FJLong.Sorter
                    (null, a, new long[n], fromIndex, n, 0,
                     ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                             MIN_ARRAY_SORT_GRAN : g).invoke();
    }



    @SuppressWarnings("unchecked")
    public static <T extends Comparable<? super T>> void parallelSort(T[] a){
        int n = a.length, p, g;
        if(n <= MIN_ARRAY_SORT_GRAN ||
           (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            TimSort.sort(a, 0, n, NaturalOrder.INSTANCE, null, 0, 0);
        else
            new ArraysParallelSortHelpers.FJObject.Sorter<T>
                    (null, a,
                     (T[]) Array.newInstance(a.getClass().getComponentType(), n),
                     0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                             MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke();
    }

    @SuppressWarnings("unchecked")
    public static <T extends Comparable<? super T>>
    void parallelSort(T[] a, int fromIndex, int toIndex){
        rangeCheck(a.length, fromIndex, toIndex);
        int n = toIndex - fromIndex, p, g;
        if(n <= MIN_ARRAY_SORT_GRAN ||
           (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            TimSort.sort(a, fromIndex, toIndex, NaturalOrder.INSTANCE, null, 0, 0);
        else
            new ArraysParallelSortHelpers.FJObject.Sorter<T>
                    (null, a,
                     (T[]) Array.newInstance(a.getClass().getComponentType(), n),
                     fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                             MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke();
    }

    @SuppressWarnings("unchecked")
    public static <T> void parallelSort(T[] a, Comparator<? super T> cmp){
        if(cmp == null)
            cmp = NaturalOrder.INSTANCE;
        int n = a.length, p, g;
        if(n <= MIN_ARRAY_SORT_GRAN ||
           (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            TimSort.sort(a, 0, n, cmp, null, 0, 0);
        else
            new ArraysParallelSortHelpers.FJObject.Sorter<T>
                    (null, a,
                     (T[]) Array.newInstance(a.getClass().getComponentType(), n),
                     0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                             MIN_ARRAY_SORT_GRAN : g, cmp).invoke();
    }

    @SuppressWarnings("unchecked")
    public static <T> void parallelSort(T[] a, int fromIndex, int toIndex,
            Comparator<? super T> cmp){
        rangeCheck(a.length, fromIndex, toIndex);
        if(cmp == null)
            cmp = NaturalOrder.INSTANCE;
        int n = toIndex - fromIndex, p, g;
        if(n <= MIN_ARRAY_SORT_GRAN ||
           (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
            TimSort.sort(a, fromIndex, toIndex, cmp, null, 0, 0);
        else
            new ArraysParallelSortHelpers.FJObject.Sorter<T>
                    (null, a,
                     (T[]) Array.newInstance(a.getClass().getComponentType(), n),
                     fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
                             MIN_ARRAY_SORT_GRAN : g, cmp).invoke();
    }


    //归并排序
    static final class LegacyMergeSort {
        private static final boolean userRequested =
                java.security.AccessController.doPrivileged(
                        new sun.security.action.GetBooleanAction(
                                "java.util.Arrays.useLegacyMergeSort")).booleanValue();
    }

    //根据需要旋转归并排序还是TimSort
    public static void sort(Object[] a){
        if(LegacyMergeSort.userRequested)
            legacyMergeSort(a);
        el***parableTimSort.sort(a, 0, a.length, null, 0, 0);
    }


    private static void legacyMergeSort(Object[] a){
        Object[] aux = a.clone();
        mergeSort(aux, a, 0, a.length, 0);
    }

    public static void sort(Object[] a, int fromIndex, int toIndex){
        rangeCheck(a.length, fromIndex, toIndex);
        if(LegacyMergeSort.userRequested)
            legacyMergeSort(a, fromIndex, toIndex);
        el***parableTimSort.sort(a, fromIndex, toIndex, null, 0, 0);
    }

    private static void legacyMergeSort(Object[] a,
            int fromIndex, int toIndex){
        Object[] aux = copyOfRange(a, fromIndex, toIndex);
        mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
    }
    private static final int INSERTIONSORT_THRESHOLD = 7;
    private static void mergeSort(Object[] src,
            Object[] dest,
            int low,
            int high,
            int off){
        int length = high - low;

        // Insertion sort on smallest arrays
        if(length < INSERTIONSORT_THRESHOLD){
            for(int i = low; i < high; i++){
                for(int j = i; j > low &&
                               ((Comparable) dest[j - 1]).compareTo(dest[j]) > 0; j--){ swap(dest, j, j - 1); }
            }
            return;
        }
        // Recursively sort halves of dest into src
        int destLow = low;
        int destHigh = high;
        low += off;
        high += off;
        int mid = (low + high) >>> 1;
        mergeSort(dest, src, low, mid, -off);
        mergeSort(dest, src, mid, high, -off);
        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        if(((Comparable) src[mid - 1]).compareTo(src[mid]) <= 0){
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }
        // Merge sorted halves (now in src) into dest
        for(int i = destLow, p = low, q = mid; i < destHigh; i++){
            if(q >= high || p < mid && ((Comparable) src[p]).compareTo(src[q]) <= 0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }
    private static void swap(Object[] x, int a, int b){
        Object t = x[a];
        x[a] = x[b];
        x[b] = t;
    }
    public static <T> void sort(T[] a, Comparator<? super T> c){
        if(c == null){
            sort(a);
        }else{
            if(LegacyMergeSort.userRequested)
                legacyMergeSort(a, c);
            else
                TimSort.sort(a, 0, a.length, c, null, 0, 0);
        }
    }
    private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c){
        T[] aux = a.clone();
        if(c == null)
            mergeSort(aux, a, 0, a.length, 0);
        else
            mergeSort(aux, a, 0, a.length, 0, c);
    }
    public static <T> void sort(T[] a, int fromIndex, int toIndex,
            Comparator<? super T> c){
        if(c == null){
            sort(a, fromIndex, toIndex);
        }else{
            rangeCheck(a.length, fromIndex, toIndex);
            if(LegacyMergeSort.userRequested)
                legacyMergeSort(a, fromIndex, toIndex, c);
            else
                TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0);
        }
    }
    private static <T> void legacyMergeSort(T[] a, int fromIndex, int toIndex,
            Comparator<? super T> c){
        T[] aux = copyOfRange(a, fromIndex, toIndex);
        if(c == null)
            mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
        else
            mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c);
    }
    private static void mergeSort(Object[] src,
            Object[] dest,
            int low, int high, int off,
            Comparator c){
        int length = high - low;

        // Insertion sort on smallest arrays
        if(length < INSERTIONSORT_THRESHOLD){
            for(int i = low; i < high; i++){
                for(int j = i; j > low && c.compare(dest[j - 1], dest[j]) > 0; j--){ swap(dest, j, j - 1); }
            }
            return;
        }
        // Recursively sort halves of dest into src
        int destLow = low;
        int destHigh = high;
        low += off;
        high += off;
        int mid = (low + high) >>> 1;
        mergeSort(dest, src, low, mid, -off, c);
        mergeSort(dest, src, mid, high, -off, c);
        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        if(c.compare(src[mid - 1], src[mid]) <= 0){
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }
        // Merge sorted halves (now in src) into dest
        for(int i = destLow, p = low, q = mid; i < destHigh; i++){
            if(q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }
    // Parallel prefix
    public static <T> void parallelPrefix(T[] array, BinaryOperator<T> op){
        Objects.requireNonNull(op);
        if(array.length > 0)
            new ArrayPrefixHelpers.CumulateTask<>
                    (null, op, array, 0, array.length).invoke();
    }
    public static <T> void parallelPrefix(T[] array, int fromIndex,
            int toIndex, BinaryOperator<T> op){
        Objects.requireNonNull(op);
        rangeCheck(array.length, fromIndex, toIndex);
        if(fromIndex < toIndex)
            new ArrayPrefixHelpers.CumulateTask<>
                    (null, op, array, fromIndex, toIndex).invoke();
    }
    // Searching
    public static int binarySearch(Object[] a, Object key){
        return binarySearch0(a, 0, a.length, key);
    }
    public static int binarySearch(Object[] a, int fromIndex, int toIndex,
            Object key){
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(Object[] a, int fromIndex, int toIndex,
            Object key){
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            @SuppressWarnings("rawtypes")
            Comparable midVal = (Comparable) a[mid];
            @SuppressWarnings("unchecked")
            int cmp = midVal.compareTo(key);

            if(cmp < 0)
                low = mid + 1;
            else if(cmp > 0)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }
    public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c){
        return binarySearch0(a, 0, a.length, key, c);
    }
    public static <T> int binarySearch(T[] a, int fromIndex, int toIndex,
            T key, Comparator<? super T> c){
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key, c);
    }

    // Like public version, but without range checks.
    private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex,
            T key, Comparator<? super T> c){
        if(c == null){
            return binarySearch0(a, fromIndex, toIndex, key);
        }
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            T midVal = a[mid];
            int cmp = c.compare(midVal, key);
            if(cmp < 0)
                low = mid + 1;
            else if(cmp > 0)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    // Equality Testing

    public static boolean equals(Object[] a, Object[] a2){
        if(a == a2)
            return true;
        if(a == null || a2 == null)
            return false;

        int length = a.length;
        if(a2.length != length)
            return false;

        for(int i = 0; i < length; i++){
            Object o1 = a[i];
            Object o2 = a2[i];
            if(!(o1 == null ? o2 == null : o1.equals(o2)))
                return false;
        }

        return true;
    }
    // Filling
    public static void fill(Object[] a, Object val){
        for(int i = 0, len = a.length; i < len; i++){ a[i] = val; }
    }


    public static void fill(Object[] a, int fromIndex, int toIndex, Object val){
        rangeCheck(a.length, fromIndex, toIndex);
        for(int i = fromIndex; i < toIndex; i++){ a[i] = val; }
    }

    // Cloning

    public static <T> T[] copyOf(T[] original, int newLength){
        return (T[]) copyOf(original, newLength, original.getClass());
    }
    public static <T, U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType){
        @SuppressWarnings("unchecked")
        T[] copy = ((Object) newType == (Object) Object[].class)
                ? (T[]) new Object[newLength]
                : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    @SuppressWarnings("unchecked")
    public static <T> T[] copyOfRange(T[] original, int from, int to){
        return copyOfRange(original, from, to, (Class<? extends T[]>) original.getClass());
    }


    public static <T, U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType){
        int newLength = to - from;
        if(newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        @SuppressWarnings("unchecked")
        T[] copy = ((Object) newType == (Object) Object[].class)
                ? (T[]) new Object[newLength]
                : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }
    // Misc
    @SafeVarargs
    @SuppressWarnings("varargs")
    public static <T> List<T> asList(T... a){
        return new ArrayList<>(a);
    }

    private static class ArrayList<E> extends AbstractList<E>
            implements RandomAccess, java.io.Serializable {
        private static final long serialVersionUID = -2764017481108945198L;
        private final E[] a;

        ArrayList(E[] array){
            a = Objects.requireNonNull(array);
        }

        @Override
        public int size(){
            return a.length;
        }

        @Override
        public Object[] toArray(){
            return a.clone();
        }

        @Override
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a){
            int size = size();
            if(a.length < size)
                return Arrays.copyOf(this.a, size,
                                     (Class<? extends T[]>) a.getClass());
            System.arraycopy(this.a, 0, a, 0, size);
            if(a.length > size)
                a[size] = null;
            return a;
        }

        @Override
        public E get(int index){
            return a[index];
        }

        @Override
        public E set(int index, E element){
            E oldValue = a[index];
            a[index] = element;
            return oldValue;
        }

        @Override
        public int indexOf(Object o){
            E[] a = this.a;
            if(o == null){
                for(int i = 0; i < a.length; i++){
                    if(a[i] == null)
                        return i;
                }
            }else{
                for(int i = 0; i < a.length; i++){
                    if(o.equals(a[i]))
                        return i;
                }
            }
            return -1;
        }

        @Override
        public boolean contains(Object o){
            return indexOf(o) != -1;
        }

        @Override
        public Spliterator<E> spliterator(){
            return Spliterators.spliterator(a, Spliterator.ORDERED);
        }

        @Override
        public void forEach(Consumer<? super E> action){
            Objects.requireNonNull(action);
            for(E e : a){
                action.accept(e);
            }
        }

        @Override
        public void replaceAll(UnaryOperator<E> operator){
            Objects.requireNonNull(operator);
            E[] a = this.a;
            for(int i = 0; i < a.length; i++){
                a[i] = operator.apply(a[i]);
            }
        }

        @Override
        public void sort(Comparator<? super E> c){
            Arrays.sort(a, c);
        }
    }
    public static int hashCode(long a[]){
        if(a == null)
            return 0;

        int result = 1;
        for(long element : a){
            int elementHash = (int) (element ^ (element >>> 32));
            result = 31 * result + elementHash;
        }

        return result;
    }
    public static int hashCode(double a[]){
        if(a == null)
            return 0;

        int result = 1;
        for(double element : a){
            long bits = Double.doubleToLongBits(element);
            result = 31 * result + (int) (bits ^ (bits >>> 32));
        }
        return result;
    }
    public static int hashCode(Object a[]){
        if(a == null)
            return 0;

        int result = 1;

        for(Object element : a){ result = 31 * result + (element == null ? 0 : element.hashCode()); }

        return result;
    }
    //把所有ele加起来
    public static int deepHashCode(Object a[]){
        if(a == null)
            return 0;

        int result = 1;

        for(Object element : a){
            int elementHash = 0;
            if(element instanceof Object[])
                elementHash = deepHashCode((Object[]) element);
            else if(element instanceof byte[])
                elementHash = hashCode((byte[]) element);
            else if(element instanceof short[])
                elementHash = hashCode((short[]) element);
            else if(element instanceof int[])
                elementHash = hashCode((int[]) element);
            else if(element instanceof long[])
                elementHash = hashCode((long[]) element);
            else if(element instanceof char[])
                elementHash = hashCode((char[]) element);
            else if(element instanceof float[])
                elementHash = hashCode((float[]) element);
            else if(element instanceof double[])
                elementHash = hashCode((double[]) element);
            else if(element instanceof boolean[])
                elementHash = hashCode((boolean[]) element);
            else if(element != null)
                elementHash = element.hashCode();

            result = 31 * result + elementHash;
        }

        return result;
    }
    public static boolean deepEquals(Object[] a1, Object[] a2){
        if(a1 == a2)
            return true;
        if(a1 == null || a2 == null)
            return false;
        int length = a1.length;
        if(a2.length != length)
            return false;

        for(int i = 0; i < length; i++){
            Object e1 = a1[i];
            Object e2 = a2[i];

            if(e1 == e2)
                continue;
            if(e1 == null)
                return false;

            // Figure out whether the two elements are equal
            boolean eq = deepEquals0(e1, e2);

            if(!eq)
                return false;
        }
        return true;
    }
    static boolean deepEquals0(Object e1, Object e2){
        assert e1 != null;
        boolean eq;
        if(e1 instanceof Object[] && e2 instanceof Object[])
            eq = deepEquals((Object[]) e1, (Object[]) e2);
        else if(e1 instanceof byte[] && e2 instanceof byte[])
            eq = equals((byte[]) e1, (byte[]) e2);
        else if(e1 instanceof short[] && e2 instanceof short[])
            eq = equals((short[]) e1, (short[]) e2);
        else if(e1 instanceof int[] && e2 instanceof int[])
            eq = equals((int[]) e1, (int[]) e2);
        else if(e1 instanceof long[] && e2 instanceof long[])
            eq = equals((long[]) e1, (long[]) e2);
        else if(e1 instanceof char[] && e2 instanceof char[])
            eq = equals((char[]) e1, (char[]) e2);
        else if(e1 instanceof float[] && e2 instanceof float[])
            eq = equals((float[]) e1, (float[]) e2);
        else if(e1 instanceof double[] && e2 instanceof double[])
            eq = equals((double[]) e1, (double[]) e2);
        else if(e1 instanceof boolean[] && e2 instanceof boolean[])
            eq = equals((boolean[]) e1, (boolean[]) e2);
        else
            eq = e1.equals(e2);
        return eq;
    }
    public static String toString(long[] a){
        if(a == null)
            return "null";
        int iMax = a.length - 1;
        if(iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for(int i = 0; ; i++){
            b.append(a[i]);
            if(i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }
    public static String toString(Object[] a){
        if(a == null)
            return "null";

        int iMax = a.length - 1;
        if(iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for(int i = 0; ; i++){
            b.append(String.valueOf(a[i]));
            if(i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }
    public static String deepToString(Object[] a){
        if(a == null)
            return "null";

        int bufLen = 20 * a.length;
        if(a.length != 0 && bufLen <= 0)
            bufLen = Integer.MAX_VALUE;
        StringBuilder buf = new StringBuilder(bufLen);
        deepToString(a, buf, new HashSet<Object[]>());
        return buf.toString();
    }

    private static void deepToString(Object[] a, StringBuilder buf,
            Set<Object[]> dejaVu){
        if(a == null){
            buf.append("null");
            return;
        }
        int iMax = a.length - 1;
        if(iMax == -1){
            buf.append("[]");
            return;
        }
        dejaVu.add(a);
        buf.append('[');
        for(int i = 0; ; i++){

            Object element = a[i];
            if(element == null){
                buf.append("null");
            }else{
                Class<?> eClass = element.getClass();

                if(eClass.isArray()){
                    if(eClass == byte[].class)
                        buf.append(toString((byte[]) element));
                    else if(eClass == short[].class)
                        buf.append(toString((short[]) element));
                    else if(eClass == int[].class)
                        buf.append(toString((int[]) element));
                    else if(eClass == long[].class)
                        buf.append(toString((long[]) element));
                    else if(eClass == char[].class)
                        buf.append(toString((char[]) element));
                    else if(eClass == float[].class)
                        buf.append(toString((float[]) element));
                    else if(eClass == double[].class)
                        buf.append(toString((double[]) element));
                    else if(eClass == boolean[].class)
                        buf.append(toString((boolean[]) element));
                    else{ // element is an array of object references
                        if(dejaVu.contains(element))
                            buf.append("[...]");
                        else
                            deepToString((Object[]) element, buf, dejaVu);
                    }
                }else{  // element is non-null and not an array
                    buf.append(element.toString());
                }
            }
            if(i == iMax)
                break;
            buf.append(", ");
        }
        buf.append(']');
        dejaVu.remove(a);
    }
    public static <T> void setAll(T[] array, IntFunction<? extends T> generator){
        Objects.requireNonNull(generator);
        for(int i = 0; i < array.length; i++){ array[i] = generator.apply(i); }
    }
    public static <T> void parallelSetAll(T[] array, IntFunction<? extends T> generator){
        Objects.requireNonNull(generator);
        IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.apply(i); });
    }
    public static <T> Spliterator<T> spliterator(T[] array){
        return Spliterators.spliterator(array,
                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
    }
    public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive){
        return Spliterators.spliterator(array, startInclusive, endExclusive,
                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
    }
    public static <T> Stream<T> stream(T[] array){
        return stream(array, 0, array.length);
    }
    public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive){
        return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false);
    }
}