如果有理数 a k ≡ b   ( m o d   p ) a^k\equiv b\ (mod\ p) akb (mod p),那么 a ≡ b k   ( m o d   p ) a\equiv \sqrt[k]{b}\ (mod\ p) akb  (mod p)
例如: 38300801 6 2 ≡ 61699199 3 2 ≡ 5   ( m o d   1 0 9 + 9 ) 383008016^2\equiv 616991993^2 \equiv 5\ (mod\ 10^9+9) 383008016261699199325 (mod 109+9),那么 383008016 ≡ 616991993 ≡ 5   ( m o d   1 0 9 + 9 ) 383008016\equiv 616991993 \equiv \sqrt{5}\ (mod\ 10^9+9) 3830080166169919935  (mod 109+9)

验证一个无理数在模数 p p p 下是否有其对应的有理数,可以通过打表获取。

# include <stdio.h> 

typedef long long ll;

const int p = 1e9 + 9;

int main() {
   
	for (ll i = 1; i <= p; i++) {
   
		if (i * i % p == 5) {
   
			printf("%d\n", i);
		}
	}	
	
	return 0;
}

运行结果:

383008016
616991993

此方法的时间复杂度为O(n),对于更低复杂度的算法,请参考洛谷中https://www.luogu.com.cn/problem/P5491的题解

斐波那契数列的通项公式
F n   =   ( 1 + 5 2 ) n − ( 1 − 5 2 ) n 5 F_n\ =\ \frac{(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n}{\sqrt5} Fn = 5 (21+5 )n(215 )n
如果求 F n % ( 1 0 9 + 9 ) F_n \%(10^9+9) Fn%(109+9)的结果,可以令 A A A = 1 + 5 2 \frac{1+\sqrt5}{2} 21+5 B B B = 1 − 5 2 \frac{1-\sqrt5}{2} 215 , C C C = 1 5 \frac{1}{\sqrt5} 5 1
根据费马小定理,当模数为质数时, A A A = ( 1 + 383008016 ) ∗ p o w ( 2 , m o d − 2 )   %   m o d (1+383008016) * pow(2, mod-2)\ \%\ mod (1+383008016)pow(2,mod2) % mod B B B = ( 1 − 383008016 + m o d ) ∗ p o w ( 2 , m o d − 2 )   %   m o d (1-383008016 + mod) * pow(2, mod-2)\ \%\ mod (1383008016+mod)pow(2,mod2) % mod C C C = p o w ( 383008016 , m o d − 2 )   %   m o d pow(383008016, mod-2)\ \%\ mod pow(383008016,mod2) % mod

# include <stdio.h> 

typedef long long ll;

const int sq5 = 383008016;
const int mod = 1e9 + 9;

int qpow(int x, int p) {
   
	int ans = 1 % mod;
	while (p) {
   
		if (p & 1) {
   
			ans = 1ll * ans * x % mod;
		}
		x = 1ll * x * x % mod;
		p >>= 1;
	}
	
	return ans;
}

int main() {
   
	int A = 1ll * (1 + sq5) * qpow(2, mod - 2) % mod;
	int B = 1ll * (1 - sq5 + mod) * qpow(2, mod - 2) % mod;
	int C = qpow(sq5, mod - 2);
	printf("%d\n%d\n%d", A, B, C);
	
	return 0;
}

运行结果:

691504013
308495997
276601605

那么当 m o d = 1 0 9 + 9 mod = 10^9+9 mod=109+9 时, F n % ( m o d ) F_n \%(mod) Fn%(mod) = C ∗ ( A n − B n + m o d )   %   m o d C*(A^n - B^n + mod)\ \%\ mod C(AnBn+mod) % mod

# include <stdio.h>

typedef long long ll;

const int mod = 1e9 + 9;

const int A = 691504013;	// (1 + sqrt(5) / 2
const int B = 308495997;	// (1 - sqrt(5) / 2
const int C = 276601605;	// 1 / sqrt(5)

ll qpow(ll x, ll p) {
   
	ll ans = 1 % mod;

	while (p) {
   
		if (p & 1) {
   
			ans = ans * x % mod;
		}
		x = x * x % mod;
		p >>= 1;
	}

	return ans;
}

int main() {
   
	int T;
	scanf("%d", &T);
	while (T--) {
   
		ll n;
		scanf("%lld", &n);
		ll re1 = qpow(A, n);
		ll re2 = qpow(B, n);
		ll ans = (re1 - re2 + mod) % mod * C % mod;
		printf("%lld\n", ans);
	}

	return 0;
}

测试OJ: https://witacm.com/problem.php?pid=1512
当然,此题也可以通过矩阵快速幂来求。

# include <iostream>

typedef long long ll;

const int mod = 1e9 + 9;
struct  Node {
   
	ll m[2][2];
	Node operator * (Node b) {
   
		Node x;
		x.m[0][0] = (( this->m[0][0] * b.m[0][0] ) % mod + ( this->m[0][1] * b.m[1][0] ) % mod) % mod;
		x.m[0][1] = (( this->m[0][0] * b.m[0][1] ) % mod + ( this->m[0][1] * b.m[1][1] ) % mod) % mod;
		x.m[1][0] = (( this->m[1][0] * b.m[0][0] ) % mod + ( this->m[1][1] * b.m[1][0] ) % mod) % mod;
		x.m[1][1] = (( this->m[1][0] * b.m[0][1] ) % mod + ( this->m[1][1] * b.m[1][1] ) % mod) % mod;

		return x;
	}
};

const Node I = {
   1, 0, 0, 1};
const Node T = {
   1, 1, 1, 0};

Node qpow(Node x, ll p) {
   
	Node ans = I;

	while (p) {
   
		if (p & 1) {
   
			ans = ans * x;
		}
		x = x * x;
		p >>= 1 ;
	}

	return ans;
}

ll fib(ll num) {
   
	if (num == 0 || num == 1) {
   
		return num;
	}

	if (num == 2) {
   
		return 1;
	}

	Node ans = qpow(T, num);
	return ans.m[0][1];
}

int main() {
   
	int T;
	scanf("%d", &T);
	while (T--) {
   
		ll n;
		scanf("%lld", &n);

		printf("%lld\n", fib(n));
	}

	return 0;
}