[HEOI2014]南园满地推轻絮
思路:
就是二分去找, 满足
那么就是要让尽可能小的满足,然后在保证单调不下降的情况下,不等式是否成立
易证:
当时,若数组满足条件且单调不下降,那么数组也一定满足且单调不下降
那么有了这个性质就可以二分答案了,因为当小的取值成立时,大的取值一定成立
Code
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 5e6 + 10; int n, sa, sb, sc, sd, p; int l, r, ans, a[maxn], b[maxn]; inline int f(int x) { return (1ll * sa * x % p * x % p * x % p + 1ll * sb * x % p * x % p + 1ll * sc * x % p + sd) % p; } inline bool Check(int x) { b[1] = max(0, a[1] - x); for (int i = 2; i <= n; ++i) { b[i] = max(b[i - 1], a[i] - x); if (abs(b[i] - a[i]) > x) return 0; } return 1; } int main() { scanf ("%d %d %d %d %d %d %d", &n, &sa, &sb, &sc, &sd, a + 1, &p); for (int i = 2; i <= n; ++i) a[i] = (f(a[i - 1]) + f(a[i - 2])) % p, r = max(r, a[i]); r = max(a[1], r); while (l <= r) { int mid = (l + r) >> 1; if (Check(mid)) ans = mid, r = mid - 1; else l = mid + 1; } printf ("%d\n", ans); }