题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5400
题意:定义(d1,d2)算术序列为:对于给定的序列b1,b2,...,bn,存在i使得bj+1=bj+d1( j∈[1,i) );bj+1=bj+d2(j∈[i,n)).现在给出d1,d2和一个序列a1,a2,...,an,找出有多少个区间[l,r]满足(d1,d2)算术序列。
解法:我们可以找出对于给定的序列,满足算术序列的所有最大子串的长度,然后对于每一个子串,找出他的所有子串即可。对于一个长度为n的序列,其所有非空子串的个数为n(n+1)/2(可以由挡板原理算出)。加了读入挂竟然跑到了HDU上面的第一名。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 100010;
int n, x, y, d1, d2, sub[maxn];
struct FastIO
{
static const int S = 1310720;
int wpos;
char wbuf[S];
FastIO() : wpos(0) {}
inline int xchar()
{
static char buf[S];
static int len = 0, pos = 0;
if (pos == len)
pos = 0, len = fread(buf, 1, S, stdin);
if (pos == len) exit(0);
return buf[pos ++];
}
inline int xuint()
{
int c = xchar(), x = 0;
while (c <= 32) c = xchar();
for (; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0';
return x;
}
inline int xint()
{
int s = 1, c = xchar(), x = 0;
while (c <= 32) c = xchar();
if (c == '-') s = -1, c = xchar();
for (; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0';
return x * s;
}
inline void xstring(char *s)
{
int c = xchar();
while (c <= 32) c = xchar();
for (; c > 32; c = xchar()) * s++ = c;
*s = 0;
}
inline void wchar(int x)
{
if (wpos == S) fwrite(wbuf, 1, S, stdout), wpos = 0;
wbuf[wpos ++] = x;
}
inline void wint(LL x)
{
if (x < 0) wchar('-'), x = -x;
char s[24];
int n = 0;
while (x || !n) s[n ++] = '0' + x % 10, x /= 10;
while (n--) wchar(s[n]);
wchar('\n');
}
inline void wstring(const char *s)
{
while (*s) wchar(*s++);
}
~FastIO()
{
if (wpos) fwrite(wbuf, 1, wpos, stdout), wpos = 0;
}
} io;
int main()
{
while(1)
{
n = io.xint();
d1 = io.xint();
d2 = io.xint();
y = io.xint();
for(int i=1; i<n; i++){
x = y;
y=io.xint();
sub[i] = y-x;
}
sub[n] = 0x3f3f3f3f;
bool flag = 1;
LL ans = n;
int l = 0, r = 0;
for(int i=1; i<=n; i++)
{
if(sub[i] == d1 && flag){
l++;
}
else if(sub[i] == d2){
r++;
flag = false;
}
else{
ans += 1LL*(l+r)*(l+r+1)/2;
l = r = 0;
flag = true;
if(sub[i] == d1){
l++;
}
}
}
io.wint(ans);
}
return 0;
}