哈弗曼树

哈夫曼树:给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

先序遍历(Pre-order)

按照根左右的顺序沿一定路径经过路径上所有的结点。在二叉树中,先根后左再右。巧记:根左右。

中序遍历(LDR)

二叉树遍历的一种,也叫做中根遍历、中序周游。在二叉树中,中序遍历首先遍历左子树,然后访问根结点,最后遍历右子树。巧记:左根右

后序遍历(LRD)

二叉树遍历的一种,也叫做后根遍历、后序周游,可记做左右根。后序遍历有递归算法和非递归算法两种。在二叉树中,先左后右再根,即首先遍历左子树,然后遍历右子树,最后访问根结点。巧记:左右根。

比如上图二叉树遍历结果

    前序遍历:ABCDEFGHK

    中序遍历:BDCAEHGKF

    后序遍历:DCBHKGFEA

分析中序遍历如下图,中序比较重要(java很多树排序是基于中序)

Binary Search Tree

二叉查找树(英语:Binary Search Tree),也称为二叉搜索树有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。
二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。
二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合multiset关联数组等。

二叉查找树的查找过程和[次优二叉树]类似,通常采取二叉链表作为二叉查找树的存储结构。中序遍历二叉查找树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉查找树变成一个有序序列,构造树的过程即为对无序序列进行查找的过程。每次插入的新的结点都是二叉查找树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索、插入、删除的复杂度等于树高。


Find 在二叉搜索树b中查找x的过程为:

  1. 若b是空树,则搜索失败,否则:
  2. 若x等于b的根节点的数据域之值,则查找成功;否则:
  3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:
  4. 查找右子树。

Insert 向一个二叉搜索树b中插入一个节点s的算法,过程为:

  1. 若b是空树,则将s所指结点作为根节点插入,否则:
  2. 若s->data等于b的根节点的数据域之值,则返回,否则:
  3. 若s->data小于b的根节点的数据域之值,则把s所指节点插入到左子树中,否则:
  4. 把s所指节点插入到右子树中。(新插入节点总是叶子节点)

Delete 在二叉查找树删去一个结点,分三种情况讨论:

  1. 若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。
  2. p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点f的左子树(当p是左子树)或右子树(当p是右子树)即可,作此修改也不破坏二叉查找树的特性。
  3. p结点的左子树和右子树均不空。在删去p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整,可以有两种做法:其一是令p的左子树为f的左/右(依p是f的左子树还是右子树而定)子树,s为p左子树的最右下的结点,而p的右子树为s的右子树;其二是令p的直接前驱(in-order predecessor)或直接后继(in-order successor)替代p,然后再从二叉查找树中删去它的直接前驱(或直接后继)。

拓扑排序

由AOV网构造拓扑序列的拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。

(1) 选择一个入度为0的顶点并输出之;

(2) 从网中删除此顶点及所有出边。

循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序列就是一种拓扑序列。

堆就是用数组实现二叉树,所以它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。

堆的常用方法:
  • 构建优先队列
  • 支持堆排序
  • 快速找出一个集合中的最小值(或者最大值)

堆属性:
堆分为两种:最大堆和最小堆,两者的差别在于节点的排序方式。

在最大堆中,父节点的值比每一个子节点的值都要大。在最小堆中,父节点的值比每一个子节点的值都要小。这就是所谓的“堆属性”,并且这个属性对堆中的每一个节点都成立。

根据这一属性,那么最大堆总是将其中的最大值存放在树的根节点。而对于最小堆,根节点中的元素总是树中的最小值
堆属性非常有用,因为堆常常被当做优先队列使用,因为可以快速地访问到最重要的元素。
注意:
堆的根节点中存放的是最大或者最小元素,但是其他节点的排序顺序是未知的。例如,
在一个最大堆中,最大的那一个元素总是位于 index 0 的位置,但是最小的元素则未必是最后一个元素。唯一能够保证的是最小的元素是一个叶节点,但是不确定是哪一个。
堆和普通树的区别
堆并不能取代二叉搜索树,它们之间有相似之处也有一些不同。我们来看一下两者的主要差别:

节点的顺序
在二叉搜索树中,左子节点必须比父节点小,右子节点必须必比父节点大。但是在堆中并非如此。在最大堆中两个子节点都必须比父节点小,而在最小堆中,它们都必须比父节点大。

内存占用
普通树占用的内存空间比它们存储的数据要多。你必须为节点对象以及左/右子节点指针分配内存。堆仅仅使用一个数据来存储数组,且不使用指针。

平衡
二叉搜索树必须是“平衡”的情况下,其大部分操作的复杂度才能达到O(log n)。你可以按任意顺序位置插入/删除数据,或者使用 AVL 树或者红黑树,但是在堆中实际上不需要整棵树都是有序的。我们只需要满足堆属性即可,所以在堆中平衡不是问题。因为堆中数据的组织方式可以保证O(log n) 的性能。

搜索
在二叉树中搜索会很快,但是在堆中搜索会很慢。在堆中搜索不是第一优先级,因为使用堆的目的是将最大(或者最小)的节点放在最前面,从而快速的进行相关插入、删除操作。

来自数组的树
用数组来实现树相关的数据结构也许看起来有点古怪,但是它在时间和空间上都是很高效的。
我们准备将上面例子中的树这样存储:
[ 10, 7, 2, 5, 1 ]
就这么多!我们除了一个简单的数组以外,不需要任何额外的空间。
如果我们不允许使用指针,那么我们怎么知道哪一个节点是父节点,哪一个节点是它的子节点呢?问得好!节点在数组中的位置index 和它的父节点以及子节点的索引之间有一个映射关系。
如果 i 是节点的索引,那么下面的公式就给出了它的父节点和子节点在数组中的位置:
parent(i) = floor((i - 1)/2)
left(i)   = 2i + 1
right(i)  = 2i + 2
注意 right(i) 就是简单的 left(i) + 1。左右节点总是处于相邻的位置。




底进顶存
s->top 是栈顶指针,空栈为-1 . 插入元素 s->top++ 出栈 s->top-- 栈满 s->top = maxSize-1

双向栈

双向栈有什么特点?

数组有两个端点,两个栈有两个栈底,让一个栈的栈底为数组的始端,即下标为0处,另一个栈为数组的末端,即下标为数组长度M-1处。这样,两个栈如果增加元素,就会从两端点向中间延伸(如下图)。


堆就是用数组实现的二叉树,所以它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。
注意:堆的根节点中存放的是最大或者最小元素,但是其他节点的排序顺序是未知的。例如,在一个最大堆中,最大的那一个元素总是位于 index 0 的位置,但是最小的元素则未必是最后一个元素。--唯一能够保证的是最小的元素是一个叶节点,但是不确定是哪一个。


作者:唐先僧
链接:https://www.jianshu.com/p/6b526aa481b1
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

就这么多!我们除了一个简单的数组以外,不需要任何额外的空间。

如果我们不允许使用指针,那么我们怎么知道哪一个节点是父节点,哪一个节点是它的子节点呢?问得好!节点在数组中的位置index 和它的父节点以及子节点的索引之间有一个映射关系。

如果i是节点的索引,那么下面的公式就给出了它的父节点和子节点在数组中的位置:



作者:唐先僧
链接:https://www.jianshu.com/p/6b526aa481b1
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
注意 right(i) 就是简单的 left(i) + 1。左右节点总是处于相邻的位置。我们将写公式放到前面的例子中验证一下。