原文链接:https://blog.csdn.net/Authur520/article/details/84781037?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1

最小堆建哈夫曼树

测试用例:

5
1  2  3  4  5 

#include<stdio.h>
#include<stdlib.h>
#define MinData -10001
typedef struct Heap *MinHeap;
typedef struct HTNode *HuffmanTree;
struct Heap{
   
    HuffmanTree *data;//存储堆元素的数组,存储时从下标1开始 
    int Size;    //记录当前堆元素个数
    int Capacity;   //堆的最大容量
};
struct HTNode{
   
	int Weight;//权值 
	HuffmanTree Left;
	HuffmanTree Right;
};

MinHeap CreateMinHeap(int MaxSize);//建一个最小堆 
bool Insert(MinHeap H,HuffmanTree item);//将新T插入最小堆 
HuffmanTree DeleteMin(MinHeap H);//从最小堆中删除一个结点,作为新T的子节点
MinHeap BuildMinHeap(MinHeap H);//将H->data[]按权值Weight调整为最小堆 
HuffmanTree Huffman(MinHeap H);//构造哈夫曼树 
void PreOrderTraversal(HuffmanTree BST);//先序遍历 
void Inorder(HuffmanTree BST);//中序遍历 
bool IsFull(MinHeap H);
bool IsEmpty(MinHeap H);
int main()
{
   
	int i,N;
	MinHeap H;
	HuffmanTree T,BT=NULL;
	printf("请输入叶子结点的个数:\n"); 
	scanf("%d",&N);
	H=CreateMinHeap(2*N);
	printf("请输入%d个叶子结点对应的权值:\n",N);
	for(i=1; i<=N; i++){
   /*最小堆元素赋值*/ 
		T=(HuffmanTree)malloc(sizeof(struct HTNode));
		T->Weight = 0;
		T->Left = T->Right = NULL;
		scanf("%d",&(T->Weight));
		H->data[++(H->Size)] = T;
	}
	
	BT = Huffman(H);  //构造哈夫曼树 
	printf("先序遍历此哈夫曼树的权值:\n"); 
	PreOrderTraversal(BT);  //先序遍历此哈夫曼树 
	puts("");
	printf("中序遍历此哈夫曼树的权值:\n");
	Inorder(BT);//中序遍历此哈夫曼树 
	return 0;
}

HuffmanTree Huffman(MinHeap H)//构造哈夫曼树 
{
   
/*假设H->Size个权值已经存在H->data[]->Weight里*/
	int i,N;
	HuffmanTree T;
	BuildMinHeap( H );//将H->data[]按权值调整为最小堆
	N=H->Size;
	for(i=1;i<N;i++)//做 H->Size-1次合并 
	{
   
		T=(HuffmanTree)malloc(sizeof(struct HTNode)); //建立一个新的根结点 
		T->Weight = 0;
		T->Left = T->Right = NULL;
		T->Left=DeleteMin(H); //从最小堆中删除一个节点,作为新T的左子结点
		T->Right=DeleteMin(H);//从最小堆中删除一个节点,作为新T的右子结点 
		T->Weight=T->Left->Weight+T->Right->Weight;//计算新权值 
		Insert(H,T);//将新T插入到最小堆 
	}
	return DeleteMin(H);
}
MinHeap CreateMinHeap(int MaxSize)
{
   /*创建容量为MaxSize的最小堆*/
    MinHeap H = (MinHeap)malloc(sizeof(struct Heap));
    H->data = (HuffmanTree*)malloc((MaxSize+1)*sizeof(HuffmanTree));
    H->Size = 0;
    H->Capacity = MaxSize;
    HuffmanTree T=(HuffmanTree)malloc(sizeof(struct HTNode)); //建立一个新的根结点 
    //定义哨兵-小于堆中所有可能元素权值的值 
    T->Weight = 0;
	T->Left = T->Right = NULL;
    T->Weight=MinData;
    H->data[0] =T;
	return H;
}
bool IsFull(MinHeap H)
{
   
	return (H->Size==H->Capacity);
}
bool IsEmpty(MinHeap H)
{
   
	return (H->Size==0);
}
bool Insert(MinHeap H,HuffmanTree item)
{
   
    int i;
	if( IsFull(H) ){
   
		printf("最小堆已满\n");
		return false;
	}
	i = ++H->Size;  //i指向插入后堆中的最后一个元素的位置
	for(; H->data[i/2]->Weight > item->Weight; i/=2)  //无哨兵,则增加判决条件 i>1 
	    H->data[i] = H->data[i/2];  //向下过滤结点 
	H->data[i] = item;   //将item插入 
	
	return true;  
    
}
HuffmanTree DeleteMin(MinHeap H)
{
   /*从最小堆H中取出权值为最小的元素,并删除一个结点*/
	int parent,child;
	HuffmanTree MinItem,temp = NULL;
	if( IsEmpty(H) ){
   
		printf("最小堆为空\n");
		return NULL;
	}
	MinItem = H->data[1];  //取出根结点-最小的元素-记录下来
	/*用最小堆中的最后一个元素从根结点开始向上过滤下层结点*/
	temp = H->data[H->Size--];  //最小堆中最后一个元素,暂时将其视为放在了根结点
	for(parent=1; parent*2<=H->Size; parent=child){
   
		child = parent*2;
		if((child != H->Size) && (H->data[child]->Weight > H->data[child+1]->Weight)){
   /*有右儿子,并且左儿子权值大于右儿子*/
			child++; //child指向左右儿子中较小者 
		}
		if(temp->Weight > H->data[child]->Weight){
   
			H->data[parent] = H->data[child];  //向上过滤结点-temp存放位置下移到child位置 
		}else{
   
			break;  //找到了合适的位置
		}
	} 
	H->data[parent] = temp;  //temp存放到此处
	
	return MinItem; 
}
MinHeap BuildMinHeap(MinHeap H)
{
   /*这里假设所有的H->Size个元素已经存在H->data[]中*/
 /*本函数将H->data[]中的元素调整,使其满足堆的有序性*/ 
	int i,parent,child;
	HuffmanTree temp;
	for(i=H->Size/2;i>0;i--){
     //从最后一个父结点开始,直到根结点 
		temp = H->data[i];
		for(parent=i; parent*2<=H->Size; parent=child){
   
		    /*向下过滤*/
			child = parent*2;
		    if((child != H->Size) && (H->data[child]->Weight > H->data[child+1]->Weight)){
   /*有右儿子,并且左儿子权值大于右儿子*/
			    child++; //child指向左右儿子中较小者 
		    }
		    if(temp->Weight > H->data[child]->Weight){
   
			    H->data[parent] = H->data[child];  //向上过滤结点-temp存放位置下移到child位置 
		    }else{
   
			    break;  //找到了合适的位置 
		    }
	    }/*结束内部for循环对以H->data[i]为根的子树的调整*/
		
		H->data[parent] = temp;  //temp(原H->data[i])存放到此处 
	} 
	return H; 
}
void PreOrderTraversal(HuffmanTree BST)
{
   
	if( BST ){
   
		printf("%d ",BST->Weight);     //先访问根节点 
		PreOrderTraversal(BST->Left);  //再访问左子树 
		PreOrderTraversal(BST->Right); //最后访问右子树 
	}
}
void Inorder(HuffmanTree BST)
{
   
	if(BST)
	{
   
		Inorder(BST->Left);//先访问左子树 
		printf("%d ",BST->Weight);//再访问根节点 
		Inorder(BST->Right);//最后访问右子树 
	}
}

增加了哈夫曼编码、解码

测试用例:

6
6  3  8  2  10  4
a  b  c  d   e  f

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MinData -10001 //随着堆元素的具体值而改变 

typedef struct TreeNode *HuffmanTree;
typedef struct TreeNode{
   
	char ch;  //要编码的字符 
	int Weight;  //权值
	HuffmanTree Left;
	HuffmanTree Right; 
}HuffmanNode;
 
typedef struct HeapStruct *MinHeap;
struct HeapStruct{
   
	HuffmanTree *data;  //存储堆元素的数组 存储时从下标1开始 
	int Size;  //堆的当前元素的个数
	int Capacity;  //堆的最大容量 
};
 
HuffmanTree NewHuffmanNode();
MinHeap CreateMinHeap(int MaxSize);
bool Insert(MinHeap H,HuffmanTree item);
HuffmanTree DeleteMin(MinHeap H);
MinHeap BuildMinHeap(MinHeap H);
HuffmanTree Huffman(MinHeap H);
void PreOrderTraversal(HuffmanTree BST);
void HuffmanCode(HuffmanTree BST,int depth);//编码 
 
int main()
{
   
	int i,N;
	MinHeap h;
	HuffmanTree T,BT = NULL;
	
	printf("请输入叶子结点的个数:\n"); 
	scanf("%d",&N);
	h = CreateMinHeap(2*N);  //创建最小堆 //N个叶子节点最终形成的哈夫曼树最多有2N-1个树结点 
	printf("请输入%d个叶子结点对应的权值:\n",N); 	
	for(i=1; i<=N; i++){
   /*最小堆元素赋值*/ 
		T = NewHuffmanNode();
		scanf("%d",&(T->Weight));
		//scanf("%d-%c",&(T->Weight),&(T->ch));
		h->data[++(h->Size)] = T;
	}
	char string[100]; 
	printf("请连续输入这%d个叶子结点各自代表的字符:\n",N); 
	getchar();  //吸收上面的换行符 
	gets(string);
	for(i=1; i<=h->Size; i++){
   /*最小堆元素赋值*/ 
		h->data[i]->ch= string[i-1];
	}
	
	BT = Huffman(h);  //构造哈夫曼树 
	printf("\n");
	HuffmanCode(BT,0);	
	return 0;
 } 
 
 /*哈夫曼树构造算法*/
HuffmanTree Huffman(MinHeap H)
 {
   /*假设H->Size个权值已经存在H->data[]->Weight里*/
 	int i,num;
	HuffmanTree T;
	
	BuildMinHeap( H );  //将H->data[]按权值调整为最小堆
	/*此处必须将H->Size的值交给num,因为后面做DeleteMin()和 Insert()函数会改变H->Size的值*/
	num = H->Size;     
	for(i=1; i<num; i++){
     //做 H->Size-1次合并 //此处教科书有问题!
		T = NewHuffmanNode();  //建立一个新的根结点 
		T->Left = DeleteMin(H);  //从最小堆中删除一个节点,作为新T的左子结点
		T->Right = DeleteMin(H);  //从最小堆中删除一个节点,作为新T的右子结点 
		T->Weight = T->Left->Weight+T->Right->Weight;  //计算新权值 
		Insert(H,T);  //将新T插入到最小堆 
	} 
	T = DeleteMin(H);
	
	return T; 
  } 
  
/************递归进行哈夫曼编码*************/
void HuffmanCode(HuffmanTree BST,int depth)  //depth为目前编码到哈夫曼树的深度(层次) 
{
   
	static int code[10];  //编码空间 
	
	if( BST ){
   
		if( (BST->Left == NULL) && (BST->Right == NULL)){
     //找到了叶结点
			printf("字符%c的哈夫曼编码为:",BST->ch);
			for(int i=0; i<depth; i++){
   
				printf("%d",code[i]);
			}
			printf("\n");
		}else{
   
			code[depth] = 0;  //往左子树方向编码为0 
			HuffmanCode(BST->Left,depth+1);
			code[depth] = 1;  //往右子树方向编码为1 
			HuffmanCode(BST->Right,depth+1);
		}
	} 
}


HuffmanTree NewHuffmanNode()
{
   
	HuffmanTree BST = (HuffmanTree)malloc(sizeof(HuffmanNode));
	BST->Weight = 0;
	BST->Left = BST->Right = NULL;
	
	return BST;
 } 
  
MinHeap CreateMinHeap(int MaxSize)
{
     /*创建容量为MaxSize的最小堆*/
	MinHeap H = (MinHeap)malloc(sizeof(struct HeapStruct));
	H->data = (HuffmanTree *)malloc((MaxSize+1) * sizeof(HuffmanTree));
	H->Size = 0;
	H->Capacity = MaxSize;
	HuffmanTree T = NewHuffmanNode();
	T->ch = '\0';  //空字符 
	T->Weight = MinData;  /*定义哨兵-为小于堆中所有可能元素权值的值,便于以后更快操作*/
	H->data[0] = T;
	
	return H;
}
 
bool  IsFull(MinHeap H)
{
   
	return (H->Size == H->Capacity);
}
 
bool IsEmpty(MinHeap H)
{
   
	return (H->Size == 0);
}
 
/*插入算法-将新增结点插入到从其父结点到根结点的有序序列中*/
bool Insert(MinHeap H,HuffmanTree item)
{
   /*将元素item插入到最小堆H中,其中H->data[0]已被定义为哨兵*/
	int i;
	if( IsFull(H) ){
   
		printf("最小堆已满\n");
		return false;
	}
	i = ++H->Size;  //i指向插入后堆中的最后一个元素的位置
	for(; H->data[i/2]->Weight > item->Weight; i/=2)  //无哨兵,则增加判决条件 i>1 
	    H->data[i] = H->data[i/2];  //向下过滤结点 
	H->data[i] = item;   //将item插入 
	
	return true;
 }
 
HuffmanTree DeleteMin(MinHeap H)
{
   /*从最小堆H中取出权值为最小的元素,并删除一个结点*/
	int parent,child;
	HuffmanTree MinItem,temp = NULL;
	if( IsEmpty(H) ){
   
		printf("最小堆为空\n");
		return NULL;
	}
	MinItem = H->data[1];  //取出根结点-最小的元素-记录下来
	/*用最小堆中的最后一个元素从根结点开始向上过滤下层结点*/
	temp = H->data[H->Size--];  //最小堆中最后一个元素,暂时将其视为放在了根结点
	for(parent=1; parent*2<=H->Size; parent=child){
   
		child = parent*2;
		if((child != H->Size) && (H->data[child]->Weight > H->data[child+1]->Weight)){
   /*有右儿子,并且左儿子权值大于右儿子*/
			child++; //child指向左右儿子中较小者 
		}
		if(temp->Weight > H->data[child]->Weight){
   
			H->data[parent] = H->data[child];  //向上过滤结点-temp存放位置下移到child位置 
		}else{
   
			break;  //找到了合适的位置
		}
	} 
	H->data[parent] = temp;  //temp存放到此处
	
	return MinItem; 
}
 
MinHeap BuildMinHeap(MinHeap H)
{
   /*这里假设所有的H->Size个元素已经存在H->data[]中*/
 /*本函数将H->data[]中的元素调整,使其满足堆的有序性*/ 
	int i,parent,child;
	HuffmanTree temp;
	for(i=H->Size/2;i>0;i--){
     //从最后一个父结点开始,直到根结点 
		temp = H->data[i];
		for(parent=i; parent*2<=H->Size; parent=child){
   
		    /*向下过滤*/
			child = parent*2;
		    if((child != H->Size) && (H->data[child]->Weight > H->data[child+1]->Weight)){
   /*有右儿子,并且左儿子权值大于右儿子*/
			    child++; //child指向左右儿子中较小者 
		    }
		    if(temp->Weight > H->data[child]->Weight){
   
			    H->data[parent] = H->data[child];  //向上过滤结点-temp存放位置下移到child位置 
		    }else{
   
			    break;  //找到了合适的位置 
		    }
	    }/*结束内部for循环对以H->data[i]为根的子树的调整*/
		
		H->data[parent] = temp;  //temp(原H->data[i])存放到此处 
	} 
	return H; 
}