package java.util; import java.io.IOException; import java.io.InvalidObjectException; import java.io.Serializable; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.Consumer; import java.util.function.Function; import sun.misc.SharedSecrets; //HashMap //HashMap是 一个桶数组,每一个桶位是链表或者红黑树 //HashMap的一个实例有两个影响其性能的参数: 初始容量和负载因子 。 // 容量是哈希表中的桶数,初始容量只是创建哈希表时的容量。 // 负载因子是在容量自动增加之前允许哈希表得到满足的度量。 // 当在散列表中的条目的数量超过了负载因数和容量的乘积,哈希表被重新散列 (即,内部数据结构被重建),使得哈希表具有桶的大约两倍。 public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; //初始桶容量:必须是2的幂 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 //最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; //负载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 链表节点转换红黑树节点的阈值, 9个节点转 static final int TREEIFY_THRESHOLD = 8; // 红黑树节点转换链表节点的阈值, 6个节点转 static final int UNTREEIFY_THRESHOLD = 6; // 转红黑树时, 桶的最小数量 static final int MIN_TREEIFY_CAPACITY = 64; //HashMap的Node结点 static class Node<K, V> implements Map.Entry<K, V> { final int hash; final K key; V value; Node<K, V> next; Node(int hash, K key, V value, Node<K, V> next){ this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey(){ return key; } public final V getValue(){ return value; } public final String toString(){ return key + "=" + value; } public final int hashCode(){ return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue){ V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o){ if(o == this) return true; if(o instanceof Map.Entry){ Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; if(Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } /* ---------------- Static utilities -------------- */ //哈希函数,key为null,hash=0,hashcode(地址值) 无符号右移16位再异或运算,也就是高16位不变,低16位与高16位异或 static final int hash(Object key){ int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } //内部类,比较器 static Class<?> comparableClassFor(Object x){ if(x instanceof Comparable){ Class<?> c; Type[] ts, as; Type t; ParameterizedType p; if((c = x.getClass()) == String.class) // bypass checks return c; if((ts = c.getGenericInterfaces()) != null){ for(int i = 0; i < ts.length; ++i){ if(((t = ts[i]) instanceof ParameterizedType) && ((p = (ParameterizedType) t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type arg is c return c; } } } return null; } @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable static int compareComparables(Class<?> kc, Object k, Object x){ return (x == null || x.getClass() != kc ? 0 : ((Comparable) k).compareTo(x)); } static final int tableSizeFor(int cap){//大于cap的最小2个整数次幂,从cap第一个高位1开始之后全1 int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } /* ---------------- Fields -------------- */ //hash 桶的数量,Node[]数组 transient Node<K, V>[] table; // 视图,key-vlue构成的set集合 transient Set<Map.Entry<K, V>> entrySet; //map中的key-value键值对数量 transient int size; //Hashmap修改次数,用于实现fail-fast策略 //HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map, //那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略 transient int modCount; //链表节点转换红黑树节点的阈值 int threshold; //负载因子 final float loadFactor; /* ---------------- Public operations -------------- */ //有参构造:容量 public HashMap(int initialCapacity, float loadFactor){ if(initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if(initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if(loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } public HashMap(int initialCapacity){ this(initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap(){ this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } public HashMap(Map<? extends K, ? extends V> m){ this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } // 有参构造,通过一个map构造new map final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict){ int s = m.size(); if(s > 0){ if(table == null){ // pre-size float ft = ((float) s / loadFactor) + 1.0F; int t = ((ft < (float) MAXIMUM_CAPACITY) ? (int) ft : MAXIMUM_CAPACITY); if(t > threshold) threshold = tableSizeFor(t); }else if(s > threshold) resize(); for(Map.Entry<? extends K, ? extends V> e : m.entrySet()){ K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } public int size(){ return size; } public boolean isEmpty(){ return size == 0; } public V get(Object key){ Node<K, V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } //通过hash值和key值获取Node final Node<K, V> getNode(int hash, Object key){ Node<K, V>[] tab; Node<K, V> first, e; int n;//n为2的幂100,n-1表达的意义是低位全1,(n-1)&hash 二进制的模运算 K k; if((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null){ if(first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; //桶中的第一个元素 if((e = first.next) != null){ if(first instanceof TreeNode) //是TreeNode红黑树节点,通过红黑树的查询方法 return ((TreeNode<K, V>) first).getTreeNode(hash, key); do { //桶中是链表结构,从first往后遍历查询 if(e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } //判断是否包含key,通过getNode方法实现 public boolean containsKey(Object key){ return getNode(hash(key), key) != null; } //通过putVal实现 public V put(K key, V value){ return putVal(hash(key), key, value, false, true); } //添加键值对到map中 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict){ Node<K, V>[] tab; //table Node<K, V> p; int n, i; if((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if((p = tab[i = (n - 1) & hash]) == null) //如果这个node(桶位空着)不存在,直接添加 tab[i] = newNode(hash, key, value, null); else{ Node<K, V> e; K k; if(p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) //key与first相等,直接修改 e = p; else if(p instanceof TreeNode) //判断这个桶中是否是红黑树 e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value); else{//桶中是链表,遍历查找key for(int binCount = 0; ; ++binCount){ if((e = p.next) == null){ p.next = newNode(hash, key, value, null); if(binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if(e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if(e != null){ // existing mapping for key V oldValue = e.value; if(!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if(++size > threshold) resize(); afterNodeInsertion(evict); return null; } // 桶数组扩容,扩容为2倍 final Node<K, V>[] resize(){ Node<K, V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if(oldCap > 0){ if(oldCap >= MAXIMUM_CAPACITY){ threshold = Integer.MAX_VALUE; return oldTab; }else if((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold }else if(oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else{ // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if(newThr == 0){ float ft = (float) newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ? (int) ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes", "unchecked"}) Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap]; table = newTab; if(oldTab != null){ for(int j = 0; j < oldCap; ++j){ Node<K, V> e; if((e = oldTab[j]) != null){ //桶位非null oldTab[j] = null; if(e.next == null) //桶位只有一个元素 newTab[e.hash & (newCap - 1)] = e; else if(e instanceof TreeNode) //桶内是红黑树 ((TreeNode<K, V>) e).split(this, newTab, j, oldCap); else{ // preserve order //桶内是链表 Node<K, V> loHead = null, loTail = null; Node<K, V> hiHead = null, hiTail = null; Node<K, V> next; do { next = e.next; if((e.hash & oldCap) == 0){ if(loTail == null) loHead = e; else loTail.next = e; loTail = e; }else{ if(hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if(loTail != null){ loTail.next = null; newTab[j] = loHead; } if(hiTail != null){ hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } //替换给定哈希的索引处(桶数组)的所有链接节点 final void treeifyBin(Node<K, V>[] tab, int hash){ int n, index; Node<K, V> e; if(tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); else if((e = tab[index = (n - 1) & hash]) != null){ TreeNode<K, V> hd = null, tl = null; do { TreeNode<K, V> p = replacementTreeNode(e, null); if(tl == null) hd = p; else{ p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if((tab[index] = hd) != null) hd.treeify(tab); } } public void putAll(Map<? extends K, ? extends V> m){ putMapEntries(m, true); } //移除指定key-value,调用removeNode实现 public V remove(Object key){ Node<K, V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } final Node<K, V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable){ Node<K, V>[] tab; Node<K, V> p; int n, index; if((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null){ Node<K, V> node = null, e; K k; V v; if(p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if((e = p.next) != null){ //p.next非null,当前桶位是链表或者红黑树 if(p instanceof TreeNode)//红黑树 node = ((TreeNode<K, V>) p).getTreeNode(hash, key); else{ //链表 do { if(e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))){ node = e; break; } p = e; } while ((e = e.next) != null); } } if(node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))){ if(node instanceof TreeNode) ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable); else if(node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; } //全部null,通过GC回收 public void clear(){ Node<K, V>[] tab; modCount++; if((tab = table) != null && size > 0){ size = 0; for(int i = 0; i < tab.length; ++i){ tab[i] = null; } } } //判断value是否存在,遍历桶数组,再遍历桶位每一个元素,再比较value public boolean containsValue(Object value){ Node<K, V>[] tab; V v; if((tab = table) != null && size > 0){ for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ if((v = e.value) == value || (value != null && value.equals(v))) return true; } } } return false; } //通过内部类KeySet实现 public Set<K> keySet(){ Set<K> ks = keySet; if(ks == null){ ks = new KeySet(); keySet = ks; } return ks; } final class KeySet extends AbstractSet<K> { public final int size(){ return size; } public final void clear(){ HashMap.this.clear(); } public final Iterator<K> iterator(){ return new KeyIterator(); } public final boolean contains(Object o){ return containsKey(o); } public final boolean remove(Object key){ return removeNode(hash(key), key, null, false, true) != null; } public final Spliterator<K> spliterator(){ return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer<? super K> action){ Node<K, V>[] tab; if(action == null) throw new NullPointerException(); if(size > 0 && (tab = table) != null){ int mc = modCount; for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e.key); } } if(modCount != mc) throw new ConcurrentModificationException(); } } } // 全体values构成容器,通过内部类Values实现 public Collection<V> values(){ Collection<V> vs = values; if(vs == null){ vs = new Values(); values = vs; } return vs; } final class Values extends AbstractCollection<V> { public final int size(){ return size; } public final void clear(){ HashMap.this.clear(); } public final Iterator<V> iterator(){ return new ValueIterator(); } public final boolean contains(Object o){ return containsValue(o); } public final Spliterator<V> spliterator(){ return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer<? super V> action){ Node<K, V>[] tab; if(action == null) throw new NullPointerException(); if(size > 0 && (tab = table) != null){ int mc = modCount; for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e.value); } } if(modCount != mc) throw new ConcurrentModificationException(); } } } // 全体key-value构成的Set集合,通过内部类 public Set<Map.Entry<K, V>> entrySet(){ Set<Map.Entry<K, V>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; } final class EntrySet extends AbstractSet<Map.Entry<K, V>> { public final int size(){ return size; } public final void clear(){ HashMap.this.clear(); } public final Iterator<Map.Entry<K, V>> iterator(){ return new EntryIterator(); } public final boolean contains(Object o){ if(!(o instanceof Map.Entry)) return false; Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; Object key = e.getKey(); Node<K, V> candidate = getNode(hash(key), key); return candidate != null && candidate.equals(e); } public final boolean remove(Object o){ if(o instanceof Map.Entry){ Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; Object key = e.getKey(); Object value = e.getValue(); return removeNode(hash(key), key, value, true, true) != null; } return false; } public final Spliterator<Map.Entry<K, V>> spliterator(){ return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer<? super Map.Entry<K, V>> action){ Node<K, V>[] tab; if(action == null) throw new NullPointerException(); if(size > 0 && (tab = table) != null){ int mc = modCount; for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e); } } if(modCount != mc) throw new ConcurrentModificationException(); } } } // Overrides of JDK8 Map extension methods //如果key存在,返回对应的value,否则返回defaultValue @Override public V getOrDefault(Object key, V defaultValue){ Node<K, V> e; return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; } @Override public V putIfAbsent(K key, V value){ return putVal(hash(key), key, value, true, true); } @Override public boolean remove(Object key, Object value){ return removeNode(hash(key), key, value, true, true) != null; } @Override public boolean replace(K key, V oldValue, V newValue){ Node<K, V> e; V v; if((e = getNode(hash(key), key)) != null && ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))){ e.value = newValue; afterNodeAccess(e); return true; } return false; } @Override public V replace(K key, V value){ Node<K, V> e; if((e = getNode(hash(key), key)) != null){ V oldValue = e.value; e.value = value; afterNodeAccess(e); return oldValue; } return null; } @Override public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction){ if(mappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K, V>[] tab; Node<K, V> first; int n, i; int binCount = 0; TreeNode<K, V> t = null; Node<K, V> old = null; if(size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if((first = tab[i = (n - 1) & hash]) != null){ if(first instanceof TreeNode) old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key); else{ Node<K, V> e = first; K k; do { if(e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))){ old = e; break; } ++binCount; } while ((e = e.next) != null); } V oldValue; if(old != null && (oldValue = old.value) != null){ afterNodeAccess(old); return oldValue; } } V v = mappingFunction.apply(key); if(v == null){ return null; }else if(old != null){ old.value = v; afterNodeAccess(old); return v; }else if(t != null) t.putTreeVal(this, tab, hash, key, v); else{ tab[i] = newNode(hash, key, v, first); if(binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); return v; } public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction){ if(remappingFunction == null) throw new NullPointerException(); Node<K, V> e; V oldValue; int hash = hash(key); if((e = getNode(hash, key)) != null && (oldValue = e.value) != null){ V v = remappingFunction.apply(key, oldValue); if(v != null){ e.value = v; afterNodeAccess(e); return v; }else removeNode(hash, key, null, false, true); } return null; } @Override public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction){ if(remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K, V>[] tab; Node<K, V> first; int n, i; int binCount = 0; TreeNode<K, V> t = null; Node<K, V> old = null; if(size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if((first = tab[i = (n - 1) & hash]) != null){ if(first instanceof TreeNode) old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key); else{ Node<K, V> e = first; K k; do { if(e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))){ old = e; break; } ++binCount; } while ((e = e.next) != null); } } V oldValue = (old == null) ? null : old.value; V v = remappingFunction.apply(key, oldValue); if(old != null){ if(v != null){ old.value = v; afterNodeAccess(old); }else removeNode(hash, key, null, false, true); }else if(v != null){ if(t != null) t.putTreeVal(this, tab, hash, key, v); else{ tab[i] = newNode(hash, key, v, first); if(binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return v; } @Override public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction){ if(value == null) throw new NullPointerException(); if(remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<K, V>[] tab; Node<K, V> first; int n, i; int binCount = 0; TreeNode<K, V> t = null; Node<K, V> old = null; if(size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if((first = tab[i = (n - 1) & hash]) != null){ if(first instanceof TreeNode) old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key); else{ Node<K, V> e = first; K k; do { if(e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))){ old = e; break; } ++binCount; } while ((e = e.next) != null); } } if(old != null){ V v; if(old.value != null) v = remappingFunction.apply(old.value, value); else v = value; if(v != null){ old.value = v; afterNodeAccess(old); }else removeNode(hash, key, null, false, true); return v; } if(value != null){ if(t != null) t.putTreeVal(this, tab, hash, key, value); else{ tab[i] = newNode(hash, key, value, first); if(binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return value; } @Override public void forEach(BiConsumer<? super K, ? super V> action){ Node<K, V>[] tab; if(action == null) throw new NullPointerException(); if(size > 0 && (tab = table) != null){ int mc = modCount; for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e.key, e.value); } } if(modCount != mc) throw new ConcurrentModificationException(); } } @Override public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function){ Node<K, V>[] tab; if(function == null) throw new NullPointerException(); if(size > 0 && (tab = table) != null){ int mc = modCount; for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ e.value = function.apply(e.key, e.value); } } if(modCount != mc) throw new ConcurrentModificationException(); } } /* ------------------------------------------------------------ */ // Cloning and serialization @SuppressWarnings("unchecked") @Override public Object clone(){ HashMap<K, V> result; try { result = (HashMap<K, V>) super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } result.reinitialize(); result.putMapEntries(this, false); return result; } final float loadFactor(){ return loadFactor; } final int capacity(){ return (table != null) ? table.length : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY; } private void writeObject(java.io.ObjectOutputStream s) throws IOException{ int buckets = capacity(); // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); s.writeInt(buckets); s.writeInt(size); internalWriteEntries(s); } private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException{ // Read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultReadObject(); reinitialize(); if(loadFactor <= 0 || Float.isNaN(loadFactor)) throw new InvalidObjectException("Illegal load factor: " + loadFactor); s.readInt(); // Read and ignore number of buckets int mappings = s.readInt(); // Read number of mappings (size) if(mappings < 0) throw new InvalidObjectException("Illegal mappings count: " + mappings); else if(mappings > 0){ // (if zero, use defaults) // Size the table using given load factor only if within // range of 0.25...4.0 float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); float fc = (float) mappings / lf + 1.0f; int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? DEFAULT_INITIAL_CAPACITY : (fc >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int) fc)); float ft = (float) cap * lf; threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? (int) ft : Integer.MAX_VALUE); // Check Map.Entry[].class since it's the nearest public type to // what we're actually creating. SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap); @SuppressWarnings({"rawtypes", "unchecked"}) Node<K, V>[] tab = (Node<K, V>[]) new Node[cap]; table = tab; // Read the keys and values, and put the mappings in the HashMap for(int i = 0; i < mappings; i++){ @SuppressWarnings("unchecked") K key = (K) s.readObject(); @SuppressWarnings("unchecked") V value = (V) s.readObject(); putVal(hash(key), key, value, false, false); } } } abstract class HashIterator { Node<K, V> next; // next entry to return Node<K, V> current; // current entry int expectedModCount; // for fast-fail int index; // current slot HashIterator(){ expectedModCount = modCount; Node<K, V>[] t = table; current = next = null; index = 0; if(t != null && size > 0){ // advance to first entry do {} while (index < t.length && (next = t[index++]) == null); } } public final boolean hasNext(){ return next != null; } final Node<K, V> nextNode(){ Node<K, V>[] t; Node<K, V> e = next; if(modCount != expectedModCount) throw new ConcurrentModificationException(); if(e == null) throw new NoSuchElementException(); if((next = (current = e).next) == null && (t = table) != null){ do {} while (index < t.length && (next = t[index++]) == null); } return e; } public final void remove(){ Node<K, V> p = current; if(p == null) throw new IllegalStateException(); if(modCount != expectedModCount) throw new ConcurrentModificationException(); current = null; K key = p.key; removeNode(hash(key), key, null, false, false); expectedModCount = modCount; } } final class KeyIterator extends HashIterator implements Iterator<K> { public final K next(){ return nextNode().key; } } final class ValueIterator extends HashIterator implements Iterator<V> { public final V next(){ return nextNode().value; } } final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K, V>> { public final Map.Entry<K, V> next(){ return nextNode(); } } /* ------------------------------------------------------------ */ // spliterators static class HashMapSpliterator<K, V> { final HashMap<K, V> map; Node<K, V> current; // current node int index; // current index, modified on advance/split int fence; // one past last index int est; // size estimate int expectedModCount; // for comodification checks HashMapSpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount){ this.map = m; this.index = origin; this.fence = fence; this.est = est; this.expectedModCount = expectedModCount; } final int getFence(){ // initialize fence and size on first use int hi; if((hi = fence) < 0){ HashMap<K, V> m = map; est = m.size; expectedModCount = m.modCount; Node<K, V>[] tab = m.table; hi = fence = (tab == null) ? 0 : tab.length; } return hi; } public final long estimateSize(){ getFence(); // force init return (long) est; } } static final class KeySpliterator<K, V> extends HashMapSpliterator<K, V> implements Spliterator<K> { KeySpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount){ super(m, origin, fence, est, expectedModCount); } public KeySpliterator<K, V> trySplit(){ int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new KeySpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer<? super K> action){ int i, hi, mc; if(action == null) throw new NullPointerException(); HashMap<K, V> m = map; Node<K, V>[] tab = m.table; if((hi = fence) < 0){ mc = expectedModCount = m.modCount; hi = fence = (tab == null) ? 0 : tab.length; }else mc = expectedModCount; if(tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)){ Node<K, V> p = current; current = null; do { if(p == null) p = tab[i++]; else{ action.accept(p.key); p = p.next; } } while (p != null || i < hi); if(m.modCount != mc) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer<? super K> action){ int hi; if(action == null) throw new NullPointerException(); Node<K, V>[] tab = map.table; if(tab != null && tab.length >= (hi = getFence()) && index >= 0){ while (current != null || index < hi) { if(current == null) current = tab[index++]; else{ K k = current.key; current = current.next; action.accept(k); if(map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics(){ return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | Spliterator.DISTINCT; } } static final class ValueSpliterator<K, V> extends HashMapSpliterator<K, V> implements Spliterator<V> { ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount){ super(m, origin, fence, est, expectedModCount); } public ValueSpliterator<K, V> trySplit(){ int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer<? super V> action){ int i, hi, mc; if(action == null) throw new NullPointerException(); HashMap<K, V> m = map; Node<K, V>[] tab = m.table; if((hi = fence) < 0){ mc = expectedModCount = m.modCount; hi = fence = (tab == null) ? 0 : tab.length; }else mc = expectedModCount; if(tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)){ Node<K, V> p = current; current = null; do { if(p == null) p = tab[i++]; else{ action.accept(p.value); p = p.next; } } while (p != null || i < hi); if(m.modCount != mc) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer<? super V> action){ int hi; if(action == null) throw new NullPointerException(); Node<K, V>[] tab = map.table; if(tab != null && tab.length >= (hi = getFence()) && index >= 0){ while (current != null || index < hi) { if(current == null) current = tab[index++]; else{ V v = current.value; current = current.next; action.accept(v); if(map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics(){ return (fence < 0 || est == map.size ? Spliterator.SIZED : 0); } } static final class EntrySpliterator<K, V> extends HashMapSpliterator<K, V> implements Spliterator<Map.Entry<K, V>> { EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est, int expectedModCount){ super(m, origin, fence, est, expectedModCount); } public EntrySpliterator<K, V> trySplit(){ int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action){ int i, hi, mc; if(action == null) throw new NullPointerException(); HashMap<K, V> m = map; Node<K, V>[] tab = m.table; if((hi = fence) < 0){ mc = expectedModCount = m.modCount; hi = fence = (tab == null) ? 0 : tab.length; }else mc = expectedModCount; if(tab != null && tab.length >= hi && (i = index) >= 0 && (i < (index = hi) || current != null)){ Node<K, V> p = current; current = null; do { if(p == null) p = tab[i++]; else{ action.accept(p); p = p.next; } } while (p != null || i < hi); if(m.modCount != mc) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action){ int hi; if(action == null) throw new NullPointerException(); Node<K, V>[] tab = map.table; if(tab != null && tab.length >= (hi = getFence()) && index >= 0){ while (current != null || index < hi) { if(current == null) current = tab[index++]; else{ Node<K, V> e = current; current = current.next; action.accept(e); if(map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics(){ return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | Spliterator.DISTINCT; } } /* ------------------------------------------------------------ */ // LinkedHashMap support // 创建一个链表Node Node<K, V> newNode(int hash, K key, V value, Node<K, V> next){ return new Node<>(hash, key, value, next); } // 将红黑树Node转换为链表Node Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next){ return new Node<>(p.hash, p.key, p.value, next); } // 创建一个红黑树Node TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next){ return new TreeNode<>(hash, key, value, next); } // For treeifyBin TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next){ return new TreeNode<>(p.hash, p.key, p.value, next); } /** * Reset to initial default state. Called by clone and readObject. */ void reinitialize(){ table = null; entrySet = null; keySet = null; values = null; modCount = 0; threshold = 0; size = 0; } // Callbacks to allow LinkedHashMap post-actions void afterNodeAccess(Node<K, V> p){ } void afterNodeInsertion(boolean evict){ } void afterNodeRemoval(Node<K, V> p){ } // Called only from writeObject, to ensure compatible ordering. void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException{ Node<K, V>[] tab; if(size > 0 && (tab = table) != null){ for(int i = 0; i < tab.length; ++i){ for(Node<K, V> e = tab[i]; e != null; e = e.next){ s.writeObject(e.key); s.writeObject(e.value); } } } } /* ------------------------------------------------------------ */ // Tree bins //红黑树,红黑树的头结点为:桶数组[hash(key)] static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> { TreeNode<K, V> parent; // red-black tree links TreeNode<K, V> left; TreeNode<K, V> right; TreeNode<K, V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<K, V> next){ super(hash, key, val, next); } //查找当前红黑树的根结点 final TreeNode<K, V> root(){ for(TreeNode<K, V> r = this, p; ; ){ if((p = r.parent) == null) return r; r = p; } } //保证给定root结点是 桶数组桶位的first结点 static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root){ int n; if(root != null && tab != null && (n = tab.length) > 0){ int index = (n - 1) & root.hash; TreeNode<K, V> first = (TreeNode<K, V>) tab[index]; if(root != first){ Node<K, V> rn; tab[index] = root; TreeNode<K, V> rp = root.prev; if((rn = root.next) != null) ((TreeNode<K, V>) rn).prev = rp; if(rp != null) rp.next = rn; if(first != null) first.prev = root; root.next = first; root.prev = null; } assert checkInvariants(root); } } /** * Finds the node starting at root p with the given hash and key. * The kc argument caches comparableClassFor(key) upon first u***paring keys. */ final TreeNode<K, V> find(int h, Object k, Class<?> kc){ TreeNode<K, V> p = this; do { int ph, dir; K pk; TreeNode<K, V> pl = p.left, pr = p.right, q; if((ph = p.hash) > h) p = pl; else if(ph < h) p = pr; else if((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if(pl == null) p = pr; else if(pr == null) p = pl; else if((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if((q = pr.find(h, k, kc)) != null) return q; else p = pl; } while (p != null); return null; } /** * Calls find for root node. */ final TreeNode<K, V> getTreeNode(int h, Object k){ return ((parent != null) ? root() : this).find(h, k, null); } /** * Tie-breaking utility for ordering insertions when equal * hashCodes and non-comparable. We don't require a total * order, just a consistent insertion rule to maintain * equivalence across rebalancings. Tie-breaking further than * necessary simplifies testing a bit. */ static int tieBreakOrder(Object a, Object b){ int d; if(a == null || b == null || (d = a.getClass().getName(). compareTo(b.getClass().getName())) == 0) d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); return d; } /** * Forms tree of the nodes linked from this node. */ final void treeify(Node<K, V>[] tab){ TreeNode<K, V> root = null; for(TreeNode<K, V> x = this, next; x != null; x = next){ next = (TreeNode<K, V>) x.next; x.left = x.right = null; if(root == null){ x.parent = null; x.red = false; root = x; }else{ K k = x.key; int h = x.hash; Class<?> kc = null; for(TreeNode<K, V> p = root; ; ){ int dir, ph; K pk = p.key; if((ph = p.hash) > h) dir = -1; else if(ph < h) dir = 1; else if((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K, V> xp = p; if((p = (dir <= 0) ? p.left : p.right) == null){ x.parent = xp; if(dir <= 0) xp.left = x; else xp.right = x; root = balanceInsertion(root, x); break; } } } } moveRootToFront(tab, root); } /** * Returns a list of non-TreeNodes replacing those linked from * this node. */ final Node<K, V> untreeify(HashMap<K, V> map){ Node<K, V> hd = null, tl = null; for(Node<K, V> q = this; q != null; q = q.next){ Node<K, V> p = map.replacementNode(q, null); if(tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /** * Tree version of putVal. */ final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v){ Class<?> kc = null; boolean searched = false; TreeNode<K, V> root = (parent != null) ? root() : this; for(TreeNode<K, V> p = root; ; ){ int dir, ph; K pk; if((ph = p.hash) > h) dir = -1; else if(ph < h) dir = 1; else if((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0){ if(!searched){ TreeNode<K, V> q, ch; searched = true; if(((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<K, V> xp = p; if((p = (dir <= 0) ? p.left : p.right) == null){ Node<K, V> xpn = xp.next; TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn); if(dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if(xpn != null) ((TreeNode<K, V>) xpn).prev = x; moveRootToFront(tab, balanceInsertion(root, x)); return null; } } } /** * Removes the given node, that must be present before this call. * This is messier than typical red-black deletion code because we * cannot swap the contents of an interior node with a leaf * successor that is pinned by "next" pointers that are accessible * independently during traversal. So instead we swap the tree * linkages. If the current tree appears to have too few nodes, * the bin is converted back to a plain bin. (The test triggers * somewhere between 2 and 6 nodes, depending on tree structure). */ final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab, boolean movable){ int n; if(tab == null || (n = tab.length) == 0) return; int index = (n - 1) & hash; TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl; TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev; if(pred == null) tab[index] = first = succ; else pred.next = succ; if(succ != null) succ.prev = pred; if(first == null) return; if(root.parent != null) root = root.root(); if(root == null || (movable && (root.right == null || (rl = root.left) == null || rl.left == null))){ tab[index] = first.untreeify(map); // too small return; } TreeNode<K, V> p = this, pl = left, pr = right, replacement; if(pl != null && pr != null){ TreeNode<K, V> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K, V> sr = s.right; TreeNode<K, V> pp = p.parent; if(s == pr){ // p was s's direct parent p.parent = s; s.right = p; }else{ TreeNode<K, V> sp = s.parent; if((p.parent = sp) != null){ if(s == sp.left) sp.left = p; else sp.right = p; } if((s.right = pr) != null) pr.parent = s; } p.left = null; if((p.right = sr) != null) sr.parent = p; if((s.left = pl) != null) pl.parent = s; if((s.parent = pp) == null) root = s; else if(p == pp.left) pp.left = s; else pp.right = s; if(sr != null) replacement = sr; else replacement = p; }else if(pl != null) replacement = pl; else if(pr != null) replacement = pr; else replacement = p; if(replacement != p){ TreeNode<K, V> pp = replacement.parent = p.parent; if(pp == null) root = replacement; else if(p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement); if(replacement == p){ // detach TreeNode<K, V> pp = p.parent; p.parent = null; if(pp != null){ if(p == pp.left) pp.left = null; else if(p == pp.right) pp.right = null; } } if(movable) moveRootToFront(tab, r); } /** * Splits nodes in a tree bin into lower and upper tree bins, * or untreeifies if now too small. Called only from resize; * see above discussion about split bits and indices. * * @param map the map * @param tab the table for recording bin heads * @param index the index of the table being split * @param bit the bit of hash to split on */ final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit){ TreeNode<K, V> b = this; // Relink into lo and hi lists, preserving order TreeNode<K, V> loHead = null, loTail = null; TreeNode<K, V> hiHead = null, hiTail = null; int lc = 0, hc = 0; for(TreeNode<K, V> e = b, next; e != null; e = next){ next = (TreeNode<K, V>) e.next; e.next = null; if((e.hash & bit) == 0){ if((e.prev = loTail) == null) loHead = e; else loTail.next = e; loTail = e; ++lc; }else{ if((e.prev = hiTail) == null) hiHead = e; else hiTail.next = e; hiTail = e; ++hc; } } if(loHead != null){ if(lc <= UNTREEIFY_THRESHOLD) tab[index] = loHead.untreeify(map); else{ tab[index] = loHead; if(hiHead != null) // (else is already treeified) loHead.treeify(tab); } } if(hiHead != null){ if(hc <= UNTREEIFY_THRESHOLD) tab[index + bit] = hiHead.untreeify(map); else{ tab[index + bit] = hiHead; if(loHead != null) hiHead.treeify(tab); } } } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR //左旋 static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p){ TreeNode<K, V> r, pp, rl; if(p != null && (r = p.right) != null){ if((rl = p.right = r.left) != null) rl.parent = p; if((pp = r.parent = p.parent) == null) (root = r).red = false; else if(pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } //右旋 static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p){ TreeNode<K, V> l, pp, lr; if(p != null && (l = p.left) != null){ if((lr = p.left = l.right) != null) lr.parent = p; if((pp = l.parent = p.parent) == null) (root = l).red = false; else if(pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } //平衡 static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x){ x.red = true; for(TreeNode<K, V> xp, xpp, xppl, xppr; ; ){ if((xp = x.parent) == null){ x.red = false; return x; }else if(!xp.red || (xpp = xp.parent) == null) return root; if(xp == (xppl = xpp.left)){ if((xppr = xpp.right) != null && xppr.red){ xppr.red = false; xp.red = false; xpp.red = true; x = xpp; }else{ if(x == xp.right){ root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if(xp != null){ xp.red = false; if(xpp != null){ xpp.red = true; root = rotateRight(root, xpp); } } } }else{ if(xppl != null && xppl.red){ xppl.red = false; xp.red = false; xpp.red = true; x = xpp; }else{ if(x == xp.left){ root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if(xp != null){ xp.red = false; if(xpp != null){ xpp.red = true; root = rotateLeft(root, xpp); } } } } } } //删除,平衡 static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root, TreeNode<K, V> x){ for(TreeNode<K, V> xp, xpl, xpr; ; ){ if(x == null || x == root) return root; else if((xp = x.parent) == null){ x.red = false; return x; }else if(x.red){ x.red = false; return root; }else if((xpl = xp.left) == x){ if((xpr = xp.right) != null && xpr.red){ xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if(xpr == null) x = xp; else{ TreeNode<K, V> sl = xpr.left, sr = xpr.right; if((sr == null || !sr.red) && (sl == null || !sl.red)){ xpr.red = true; x = xp; }else{ if(sr == null || !sr.red){ if(sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if(xpr != null){ xpr.red = (xp == null) ? false : xp.red; if((sr = xpr.right) != null) sr.red = false; } if(xp != null){ xp.red = false; root = rotateLeft(root, xp); } x = root; } } }else{ // symmetric if(xpl != null && xpl.red){ xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if(xpl == null) x = xp; else{ TreeNode<K, V> sl = xpl.left, sr = xpl.right; if((sl == null || !sl.red) && (sr == null || !sr.red)){ xpl.red = true; x = xp; }else{ if(sl == null || !sl.red){ if(sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if(xpl != null){ xpl.red = (xp == null) ? false : xp.red; if((sl = xpl.left) != null) sl.red = false; } if(xp != null){ xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <K, V> boolean checkInvariants(TreeNode<K, V> t){ TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K, V>) t.next; if(tb != null && tb.next != t) return false; if(tn != null && tn.prev != t) return false; if(tp != null && t != tp.left && t != tp.right) return false; if(tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if(tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if(t.red && tl != null && tl.red && tr != null && tr.red) return false; if(tl != null && !checkInvariants(tl)) return false; if(tr != null && !checkInvariants(tr)) return false; return true; } } }