package java.util;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

import sun.misc.SharedSecrets;

//HashMap
//HashMap是 一个桶数组,每一个桶位是链表或者红黑树
//HashMap的一个实例有两个影响其性能的参数: 初始容量和负载因子 。
// 容量是哈希表中的桶数,初始容量只是创建哈希表时的容量。
// 负载因子是在容量自动增加之前允许哈希表得到满足的度量。
// 当在散列表中的条目的数量超过了负载因数和容量的乘积,哈希表被重新散列 (即,内部数据结构被重建),使得哈希表具有桶的大约两倍。

public class HashMap<K, V> extends AbstractMap<K, V>
        implements Map<K, V>, Cloneable, Serializable {
    private static final long serialVersionUID = 362498820763181265L;
    //初始桶容量:必须是2的幂
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    //最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 链表节点转换红黑树节点的阈值, 9个节点转
    static final int TREEIFY_THRESHOLD = 8;
    // 红黑树节点转换链表节点的阈值, 6个节点转
    static final int UNTREEIFY_THRESHOLD = 6;

    // 转红黑树时, 桶的最小数量
    static final int MIN_TREEIFY_CAPACITY = 64;

    //HashMap的Node结点
    static class Node<K, V> implements Map.Entry<K, V> {
        final int hash;
        final K key;
        V value;
        Node<K, V> next;

        Node(int hash, K key, V value, Node<K, V> next){
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey(){ return key; }

        public final V getValue(){ return value; }

        public final String toString(){ return key + "=" + value; }

        public final int hashCode(){
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue){
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o){
            if(o == this)
                return true;
            if(o instanceof Map.Entry){
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                if(Objects.equals(key, e.getKey()) &&
                   Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    //哈希函数,key为null,hash=0,hashcode(地址值) 无符号右移16位再异或运算,也就是高16位不变,低16位与高16位异或
    static final int hash(Object key){
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    //内部类,比较器
    static Class<?> comparableClassFor(Object x){
        if(x instanceof Comparable){
            Class<?> c;
            Type[] ts, as;
            Type t;
            ParameterizedType p;
            if((c = x.getClass()) == String.class) // bypass checks
                return c;
            if((ts = c.getGenericInterfaces()) != null){
                for(int i = 0; i < ts.length; ++i){
                    if(((t = ts[i]) instanceof ParameterizedType) &&
                       ((p = (ParameterizedType) t).getRawType() ==
                        Comparable.class) &&
                       (as = p.getActualTypeArguments()) != null &&
                       as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x){
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable) k).compareTo(x));
    }

    static final int tableSizeFor(int cap){//大于cap的最小2个整数次幂,从cap第一个高位1开始之后全1
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */
    //hash 桶的数量,Node[]数组
    transient Node<K, V>[] table;
    // 视图,key-vlue构成的set集合
    transient Set<Map.Entry<K, V>> entrySet;
    //map中的key-value键值对数量
    transient int size;

    //Hashmap修改次数,用于实现fail-fast策略
    //HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,
    //那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略
    transient int modCount;

    //链表节点转换红黑树节点的阈值
    int threshold;

    //负载因子
    final float loadFactor;

    /* ---------------- Public operations -------------- */
    //有参构造:容量
    public HashMap(int initialCapacity, float loadFactor){
        if(initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if(initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if(loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    public HashMap(int initialCapacity){
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }


    public HashMap(){
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }


    public HashMap(Map<? extends K, ? extends V> m){
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    //    有参构造,通过一个map构造new map
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict){
        int s = m.size();
        if(s > 0){
            if(table == null){ // pre-size
                float ft = ((float) s / loadFactor) + 1.0F;
                int t = ((ft < (float) MAXIMUM_CAPACITY) ?
                        (int) ft : MAXIMUM_CAPACITY);
                if(t > threshold)
                    threshold = tableSizeFor(t);
            }else if(s > threshold)
                resize();
            for(Map.Entry<? extends K, ? extends V> e : m.entrySet()){
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }


    public int size(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    public V get(Object key){
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    //通过hash值和key值获取Node
    final Node<K, V> getNode(int hash, Object key){
        Node<K, V>[] tab;
        Node<K, V> first, e;
        int n;//n为2的幂100,n-1表达的意义是低位全1,(n-1)&hash 二进制的模运算
        K k;
        if((tab = table) != null && (n = tab.length) > 0 &&
           (first = tab[(n - 1) & hash]) != null){
            if(first.hash == hash && // always check first node
               ((k = first.key) == key || (key != null && key.equals(k))))
                return first; //桶中的第一个元素
            if((e = first.next) != null){
                if(first instanceof TreeNode) //是TreeNode红黑树节点,通过红黑树的查询方法
                    return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                do {  //桶中是链表结构,从first往后遍历查询
                    if(e.hash == hash &&
                       ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    //判断是否包含key,通过getNode方法实现
    public boolean containsKey(Object key){
        return getNode(hash(key), key) != null;
    }

    //通过putVal实现
    public V put(K key, V value){
        return putVal(hash(key), key, value, false, true);
    }
    //添加键值对到map中
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
            boolean evict){
        Node<K, V>[] tab; //table
        Node<K, V> p;
        int n, i;
        if((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if((p = tab[i = (n - 1) & hash]) == null) //如果这个node(桶位空着)不存在,直接添加
            tab[i] = newNode(hash, key, value, null);
        else{
            Node<K, V> e;
            K k;
            if(p.hash == hash &&
               ((k = p.key) == key || (key != null && key.equals(k))))  //key与first相等,直接修改
                e = p;
            else if(p instanceof TreeNode) //判断这个桶中是否是红黑树
                e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
            else{//桶中是链表,遍历查找key
                for(int binCount = 0; ; ++binCount){
                    if((e = p.next) == null){
                        p.next = newNode(hash, key, value, null);
                        if(binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if(e.hash == hash &&
                       ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if(e != null){ // existing mapping for key
                V oldValue = e.value;
                if(!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if(++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    // 桶数组扩容,扩容为2倍
    final Node<K, V>[] resize(){
        Node<K, V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if(oldCap > 0){
            if(oldCap >= MAXIMUM_CAPACITY){
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }else if((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }else if(oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else{               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if(newThr == 0){
            float ft = (float) newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                    (int) ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes", "unchecked"})
        Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
        table = newTab;
        if(oldTab != null){
            for(int j = 0; j < oldCap; ++j){
                Node<K, V> e;
                if((e = oldTab[j]) != null){ //桶位非null
                    oldTab[j] = null;
                    if(e.next == null) //桶位只有一个元素
                        newTab[e.hash & (newCap - 1)] = e;
                    else if(e instanceof TreeNode) //桶内是红黑树
                        ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
                    else{ // preserve order   //桶内是链表
                        Node<K, V> loHead = null, loTail = null;
                        Node<K, V> hiHead = null, hiTail = null;
                        Node<K, V> next;
                        do {
                            next = e.next;
                            if((e.hash & oldCap) == 0){
                                if(loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }else{
                                if(hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if(loTail != null){
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if(hiTail != null){
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    //替换给定哈希的索引处(桶数组)的所有链接节点
    final void treeifyBin(Node<K, V>[] tab, int hash){
        int n, index;
        Node<K, V> e;
        if(tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if((e = tab[index = (n - 1) & hash]) != null){
            TreeNode<K, V> hd = null, tl = null;
            do {
                TreeNode<K, V> p = replacementTreeNode(e, null);
                if(tl == null)
                    hd = p;
                else{
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }


    public void putAll(Map<? extends K, ? extends V> m){
        putMapEntries(m, true);
    }

    //移除指定key-value,调用removeNode实现
    public V remove(Object key){
        Node<K, V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

    final Node<K, V> removeNode(int hash, Object key, Object value,
            boolean matchValue, boolean movable){
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, index;
        if((tab = table) != null && (n = tab.length) > 0 &&
           (p = tab[index = (n - 1) & hash]) != null){
            Node<K, V> node = null, e;
            K k;
            V v;
            if(p.hash == hash &&
               ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if((e = p.next) != null){ //p.next非null,当前桶位是链表或者红黑树
                if(p instanceof TreeNode)//红黑树
                    node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                else{ //链表
                    do {
                        if(e.hash == hash &&
                           ((k = e.key) == key ||
                            (key != null && key.equals(k)))){
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if(node != null && (!matchValue || (v = node.value) == value ||
                                (value != null && value.equals(v)))){
                if(node instanceof TreeNode)
                    ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                else if(node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    //全部null,通过GC回收
    public void clear(){
        Node<K, V>[] tab;
        modCount++;
        if((tab = table) != null && size > 0){
            size = 0;
            for(int i = 0; i < tab.length; ++i){ tab[i] = null; }
        }
    }

    //判断value是否存在,遍历桶数组,再遍历桶位每一个元素,再比较value
    public boolean containsValue(Object value){
        Node<K, V>[] tab;
        V v;
        if((tab = table) != null && size > 0){
            for(int i = 0; i < tab.length; ++i){
                for(Node<K, V> e = tab[i]; e != null; e = e.next){
                    if((v = e.value) == value ||
                       (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    //通过内部类KeySet实现
    public Set<K> keySet(){
        Set<K> ks = keySet;
        if(ks == null){
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> {
        public final int size(){ return size; }

        public final void clear(){ HashMap.this.clear(); }

        public final Iterator<K> iterator(){ return new KeyIterator(); }

        public final boolean contains(Object o){ return containsKey(o); }

        public final boolean remove(Object key){
            return removeNode(hash(key), key, null, false, true) != null;
        }

        public final Spliterator<K> spliterator(){
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super K> action){
            Node<K, V>[] tab;
            if(action == null)
                throw new NullPointerException();
            if(size > 0 && (tab = table) != null){
                int mc = modCount;
                for(int i = 0; i < tab.length; ++i){
                    for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e.key); }
                }
                if(modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // 全体values构成容器,通过内部类Values实现
    public Collection<V> values(){
        Collection<V> vs = values;
        if(vs == null){
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size(){ return size; }

        public final void clear(){ HashMap.this.clear(); }

        public final Iterator<V> iterator(){ return new ValueIterator(); }

        public final boolean contains(Object o){ return containsValue(o); }

        public final Spliterator<V> spliterator(){
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super V> action){
            Node<K, V>[] tab;
            if(action == null)
                throw new NullPointerException();
            if(size > 0 && (tab = table) != null){
                int mc = modCount;
                for(int i = 0; i < tab.length; ++i){
                    for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e.value); }
                }
                if(modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // 全体key-value构成的Set集合,通过内部类
    public Set<Map.Entry<K, V>> entrySet(){
        Set<Map.Entry<K, V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
        public final int size(){ return size; }

        public final void clear(){ HashMap.this.clear(); }

        public final Iterator<Map.Entry<K, V>> iterator(){
            return new EntryIterator();
        }

        public final boolean contains(Object o){
            if(!(o instanceof Map.Entry))
                return false;
            Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
            Object key = e.getKey();
            Node<K, V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }

        public final boolean remove(Object o){
            if(o instanceof Map.Entry){
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }

        public final Spliterator<Map.Entry<K, V>> spliterator(){
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super Map.Entry<K, V>> action){
            Node<K, V>[] tab;
            if(action == null)
                throw new NullPointerException();
            if(size > 0 && (tab = table) != null){
                int mc = modCount;
                for(int i = 0; i < tab.length; ++i){
                    for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e); }
                }
                if(modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods
    //如果key存在,返回对应的value,否则返回defaultValue
    @Override
    public V getOrDefault(Object key, V defaultValue){
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value){
        return putVal(hash(key), key, value, true, true);
    }

    @Override
    public boolean remove(Object key, Object value){
        return removeNode(hash(key), key, value, true, true) != null;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue){
        Node<K, V> e;
        V v;
        if((e = getNode(hash(key), key)) != null &&
           ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))){
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value){
        Node<K, V> e;
        if((e = getNode(hash(key), key)) != null){
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    @Override
    public V computeIfAbsent(K key,
            Function<? super K, ? extends V> mappingFunction){
        if(mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if(size > threshold || (tab = table) == null ||
           (n = tab.length) == 0)
            n = (tab = resize()).length;
        if((first = tab[i = (n - 1) & hash]) != null){
            if(first instanceof TreeNode)
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            else{
                Node<K, V> e = first;
                K k;
                do {
                    if(e.hash == hash &&
                       ((k = e.key) == key || (key != null && key.equals(k)))){
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if(old != null && (oldValue = old.value) != null){
                afterNodeAccess(old);
                return oldValue;
            }
        }
        V v = mappingFunction.apply(key);
        if(v == null){
            return null;
        }else if(old != null){
            old.value = v;
            afterNodeAccess(old);
            return v;
        }else if(t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else{
            tab[i] = newNode(hash, key, v, first);
            if(binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    public V computeIfPresent(K key,
            BiFunction<? super K, ? super V, ? extends V> remappingFunction){
        if(remappingFunction == null)
            throw new NullPointerException();
        Node<K, V> e;
        V oldValue;
        int hash = hash(key);
        if((e = getNode(hash, key)) != null &&
           (oldValue = e.value) != null){
            V v = remappingFunction.apply(key, oldValue);
            if(v != null){
                e.value = v;
                afterNodeAccess(e);
                return v;
            }else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    @Override
    public V compute(K key,
            BiFunction<? super K, ? super V, ? extends V> remappingFunction){
        if(remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if(size > threshold || (tab = table) == null ||
           (n = tab.length) == 0)
            n = (tab = resize()).length;
        if((first = tab[i = (n - 1) & hash]) != null){
            if(first instanceof TreeNode)
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            else{
                Node<K, V> e = first;
                K k;
                do {
                    if(e.hash == hash &&
                       ((k = e.key) == key || (key != null && key.equals(k)))){
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        V v = remappingFunction.apply(key, oldValue);
        if(old != null){
            if(v != null){
                old.value = v;
                afterNodeAccess(old);
            }else
                removeNode(hash, key, null, false, true);
        }else if(v != null){
            if(t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else{
                tab[i] = newNode(hash, key, v, first);
                if(binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    @Override
    public V merge(K key, V value,
            BiFunction<? super V, ? super V, ? extends V> remappingFunction){
        if(value == null)
            throw new NullPointerException();
        if(remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if(size > threshold || (tab = table) == null ||
           (n = tab.length) == 0)
            n = (tab = resize()).length;
        if((first = tab[i = (n - 1) & hash]) != null){
            if(first instanceof TreeNode)
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            else{
                Node<K, V> e = first;
                K k;
                do {
                    if(e.hash == hash &&
                       ((k = e.key) == key || (key != null && key.equals(k)))){
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if(old != null){
            V v;
            if(old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if(v != null){
                old.value = v;
                afterNodeAccess(old);
            }else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if(value != null){
            if(t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else{
                tab[i] = newNode(hash, key, value, first);
                if(binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action){
        Node<K, V>[] tab;
        if(action == null)
            throw new NullPointerException();
        if(size > 0 && (tab = table) != null){
            int mc = modCount;
            for(int i = 0; i < tab.length; ++i){
                for(Node<K, V> e = tab[i]; e != null; e = e.next){ action.accept(e.key, e.value); }
            }
            if(modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function){
        Node<K, V>[] tab;
        if(function == null)
            throw new NullPointerException();
        if(size > 0 && (tab = table) != null){
            int mc = modCount;
            for(int i = 0; i < tab.length; ++i){
                for(Node<K, V> e = tab[i]; e != null; e = e.next){
                    e.value = function.apply(e.key, e.value);
                }
            }
            if(modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization
    @SuppressWarnings("unchecked")
    @Override
    public Object clone(){
        HashMap<K, V> result;
        try {
            result = (HashMap<K, V>) super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    final float loadFactor(){ return loadFactor; }

    final int capacity(){
        return (table != null) ? table.length :
                (threshold > 0) ? threshold :
                        DEFAULT_INITIAL_CAPACITY;
    }

    private void writeObject(java.io.ObjectOutputStream s)
            throws IOException{
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }


    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException{
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if(loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                                             loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if(mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                                             mappings);
        else if(mappings > 0){ // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float) mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                    DEFAULT_INITIAL_CAPACITY :
                    (fc >= MAXIMUM_CAPACITY) ?
                            MAXIMUM_CAPACITY :
                            tableSizeFor((int) fc));
            float ft = (float) cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                    (int) ft : Integer.MAX_VALUE);

            // Check Map.Entry[].class since it's the nearest public type to
            // what we're actually creating.
            SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
            @SuppressWarnings({"rawtypes", "unchecked"})
            Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for(int i = 0; i < mappings; i++){
                @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }



    abstract class HashIterator {
        Node<K, V> next;        // next entry to return
        Node<K, V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator(){
            expectedModCount = modCount;
            Node<K, V>[] t = table;
            current = next = null;
            index = 0;
            if(t != null && size > 0){ // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext(){
            return next != null;
        }

        final Node<K, V> nextNode(){
            Node<K, V>[] t;
            Node<K, V> e = next;
            if(modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if(e == null)
                throw new NoSuchElementException();
            if((next = (current = e).next) == null && (t = table) != null){
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove(){
            Node<K, V> p = current;
            if(p == null)
                throw new IllegalStateException();
            if(modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator
            implements Iterator<K> {
        public final K next(){ return nextNode().key; }
    }

    final class ValueIterator extends HashIterator
            implements Iterator<V> {
        public final V next(){ return nextNode().value; }
    }

    final class EntryIterator extends HashIterator
            implements Iterator<Map.Entry<K, V>> {
        public final Map.Entry<K, V> next(){ return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // spliterators

    static class HashMapSpliterator<K, V> {
        final HashMap<K, V> map;
        Node<K, V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap<K, V> m, int origin,
                int fence, int est,
                int expectedModCount){
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence(){ // initialize fence and size on first use
            int hi;
            if((hi = fence) < 0){
                HashMap<K, V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K, V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize(){
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K, V>
            extends HashMapSpliterator<K, V>
            implements Spliterator<K> {
        KeySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                int expectedModCount){
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K, V> trySplit(){
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                         expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action){
            int i, hi, mc;
            if(action == null)
                throw new NullPointerException();
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if((hi = fence) < 0){
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }else
                mc = expectedModCount;
            if(tab != null && tab.length >= hi &&
               (i = index) >= 0 && (i < (index = hi) || current != null)){
                Node<K, V> p = current;
                current = null;
                do {
                    if(p == null)
                        p = tab[i++];
                    else{
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if(m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action){
            int hi;
            if(action == null)
                throw new NullPointerException();
            Node<K, V>[] tab = map.table;
            if(tab != null && tab.length >= (hi = getFence()) && index >= 0){
                while (current != null || index < hi) {
                    if(current == null)
                        current = tab[index++];
                    else{
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if(map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics(){
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                   Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K, V>
            extends HashMapSpliterator<K, V>
            implements Spliterator<V> {
        ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est,
                int expectedModCount){
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K, V> trySplit(){
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                           expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action){
            int i, hi, mc;
            if(action == null)
                throw new NullPointerException();
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if((hi = fence) < 0){
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }else
                mc = expectedModCount;
            if(tab != null && tab.length >= hi &&
               (i = index) >= 0 && (i < (index = hi) || current != null)){
                Node<K, V> p = current;
                current = null;
                do {
                    if(p == null)
                        p = tab[i++];
                    else{
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if(m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action){
            int hi;
            if(action == null)
                throw new NullPointerException();
            Node<K, V>[] tab = map.table;
            if(tab != null && tab.length >= (hi = getFence()) && index >= 0){
                while (current != null || index < hi) {
                    if(current == null)
                        current = tab[index++];
                    else{
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if(map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics(){
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K, V>
            extends HashMapSpliterator<K, V>
            implements Spliterator<Map.Entry<K, V>> {
        EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                int expectedModCount){
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K, V> trySplit(){
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                           expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action){
            int i, hi, mc;
            if(action == null)
                throw new NullPointerException();
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if((hi = fence) < 0){
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }else
                mc = expectedModCount;
            if(tab != null && tab.length >= hi &&
               (i = index) >= 0 && (i < (index = hi) || current != null)){
                Node<K, V> p = current;
                current = null;
                do {
                    if(p == null)
                        p = tab[i++];
                    else{
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if(m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action){
            int hi;
            if(action == null)
                throw new NullPointerException();
            Node<K, V>[] tab = map.table;
            if(tab != null && tab.length >= (hi = getFence()) && index >= 0){
                while (current != null || index < hi) {
                    if(current == null)
                        current = tab[index++];
                    else{
                        Node<K, V> e = current;
                        current = current.next;
                        action.accept(e);
                        if(map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics(){
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                   Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support
    // 创建一个链表Node
    Node<K, V> newNode(int hash, K key, V value, Node<K, V> next){
        return new Node<>(hash, key, value, next);
    }
    // 将红黑树Node转换为链表Node
    Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next){
        return new Node<>(p.hash, p.key, p.value, next);
    }
    // 创建一个红黑树Node
    TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next){
        return new TreeNode<>(hash, key, value, next);
    }
    // For treeifyBin
    TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next){
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }
    /**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize(){
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K, V> p){ }

    void afterNodeInsertion(boolean evict){ }

    void afterNodeRemoval(Node<K, V> p){ }

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException{
        Node<K, V>[] tab;
        if(size > 0 && (tab = table) != null){
            for(int i = 0; i < tab.length; ++i){
                for(Node<K, V> e = tab[i]; e != null; e = e.next){
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins
    //红黑树,红黑树的头结点为:桶数组[hash(key)]
    static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
        TreeNode<K, V> parent;  // red-black tree links
        TreeNode<K, V> left;
        TreeNode<K, V> right;
        TreeNode<K, V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K, V> next){
            super(hash, key, val, next);
        }
        //查找当前红黑树的根结点
        final TreeNode<K, V> root(){
            for(TreeNode<K, V> r = this, p; ; ){
                if((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        //保证给定root结点是 桶数组桶位的first结点
        static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root){
            int n;
            if(root != null && tab != null && (n = tab.length) > 0){
                int index = (n - 1) & root.hash;
                TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
                if(root != first){
                    Node<K, V> rn;
                    tab[index] = root;
                    TreeNode<K, V> rp = root.prev;
                    if((rn = root.next) != null)
                        ((TreeNode<K, V>) rn).prev = rp;
                    if(rp != null)
                        rp.next = rn;
                    if(first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first u***paring keys.
         */
        final TreeNode<K, V> find(int h, Object k, Class<?> kc){
            TreeNode<K, V> p = this;
            do {
                int ph, dir;
                K pk;
                TreeNode<K, V> pl = p.left, pr = p.right, q;
                if((ph = p.hash) > h)
                    p = pl;
                else if(ph < h)
                    p = pr;
                else if((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if(pl == null)
                    p = pr;
                else if(pr == null)
                    p = pl;
                else if((kc != null ||
                         (kc = comparableClassFor(k)) != null) &&
                        (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final TreeNode<K, V> getTreeNode(int h, Object k){
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b){
            int d;
            if(a == null || b == null ||
               (d = a.getClass().getName().
                       compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         */
        final void treeify(Node<K, V>[] tab){
            TreeNode<K, V> root = null;
            for(TreeNode<K, V> x = this, next; x != null; x = next){
                next = (TreeNode<K, V>) x.next;
                x.left = x.right = null;
                if(root == null){
                    x.parent = null;
                    x.red = false;
                    root = x;
                }else{
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for(TreeNode<K, V> p = root; ; ){
                        int dir, ph;
                        K pk = p.key;
                        if((ph = p.hash) > h)
                            dir = -1;
                        else if(ph < h)
                            dir = 1;
                        else if((kc == null &&
                                 (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K, V> xp = p;
                        if((p = (dir <= 0) ? p.left : p.right) == null){
                            x.parent = xp;
                            if(dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K, V> untreeify(HashMap<K, V> map){
            Node<K, V> hd = null, tl = null;
            for(Node<K, V> q = this; q != null; q = q.next){
                Node<K, V> p = map.replacementNode(q, null);
                if(tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab,
                int h, K k, V v){
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K, V> root = (parent != null) ? root() : this;
            for(TreeNode<K, V> p = root; ; ){
                int dir, ph;
                K pk;
                if((ph = p.hash) > h)
                    dir = -1;
                else if(ph < h)
                    dir = 1;
                else if((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if((kc == null &&
                         (kc = comparableClassFor(k)) == null) ||
                        (dir = compareComparables(kc, k, pk)) == 0){
                    if(!searched){
                        TreeNode<K, V> q, ch;
                        searched = true;
                        if(((ch = p.left) != null &&
                            (q = ch.find(h, k, kc)) != null) ||
                           ((ch = p.right) != null &&
                            (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K, V> xp = p;
                if((p = (dir <= 0) ? p.left : p.right) == null){
                    Node<K, V> xpn = xp.next;
                    TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                    if(dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if(xpn != null)
                        ((TreeNode<K, V>) xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab,
                boolean movable){
            int n;
            if(tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
            TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
            if(pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if(succ != null)
                succ.prev = pred;
            if(first == null)
                return;
            if(root.parent != null)
                root = root.root();
            if(root == null
               || (movable
                   && (root.right == null
                       || (rl = root.left) == null
                       || rl.left == null))){
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K, V> p = this, pl = left, pr = right, replacement;
            if(pl != null && pr != null){
                TreeNode<K, V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red;
                s.red = p.red;
                p.red = c; // swap colors
                TreeNode<K, V> sr = s.right;
                TreeNode<K, V> pp = p.parent;
                if(s == pr){ // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }else{
                    TreeNode<K, V> sp = s.parent;
                    if((p.parent = sp) != null){
                        if(s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if((p.right = sr) != null)
                    sr.parent = p;
                if((s.left = pl) != null)
                    pl.parent = s;
                if((s.parent = pp) == null)
                    root = s;
                else if(p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if(sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }else if(pl != null)
                replacement = pl;
            else if(pr != null)
                replacement = pr;
            else
                replacement = p;
            if(replacement != p){
                TreeNode<K, V> pp = replacement.parent = p.parent;
                if(pp == null)
                    root = replacement;
                else if(p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);

            if(replacement == p){  // detach
                TreeNode<K, V> pp = p.parent;
                p.parent = null;
                if(pp != null){
                    if(p == pp.left)
                        pp.left = null;
                    else if(p == pp.right)
                        pp.right = null;
                }
            }
            if(movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map   the map
         * @param tab   the table for recording bin heads
         * @param index the index of the table being split
         * @param bit   the bit of hash to split on
         */
        final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit){
            TreeNode<K, V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K, V> loHead = null, loTail = null;
            TreeNode<K, V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for(TreeNode<K, V> e = b, next; e != null; e = next){
                next = (TreeNode<K, V>) e.next;
                e.next = null;
                if((e.hash & bit) == 0){
                    if((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }else{
                    if((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if(loHead != null){
                if(lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else{
                    tab[index] = loHead;
                    if(hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if(hiHead != null){
                if(hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else{
                    tab[index + bit] = hiHead;
                    if(loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR
        //左旋
        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root,
                TreeNode<K, V> p){
            TreeNode<K, V> r, pp, rl;
            if(p != null && (r = p.right) != null){
                if((rl = p.right = r.left) != null)
                    rl.parent = p;
                if((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if(pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }
        //右旋
        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root,
                TreeNode<K, V> p){
            TreeNode<K, V> l, pp, lr;
            if(p != null && (l = p.left) != null){
                if((lr = p.left = l.right) != null)
                    lr.parent = p;
                if((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if(pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }
        //平衡
        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
                TreeNode<K, V> x){
            x.red = true;
            for(TreeNode<K, V> xp, xpp, xppl, xppr; ; ){
                if((xp = x.parent) == null){
                    x.red = false;
                    return x;
                }else if(!xp.red || (xpp = xp.parent) == null)
                    return root;
                if(xp == (xppl = xpp.left)){
                    if((xppr = xpp.right) != null && xppr.red){
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }else{
                        if(x == xp.right){
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if(xp != null){
                            xp.red = false;
                            if(xpp != null){
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }else{
                    if(xppl != null && xppl.red){
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }else{
                        if(x == xp.left){
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if(xp != null){
                            xp.red = false;
                            if(xpp != null){
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }
        //删除,平衡
        static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                TreeNode<K, V> x){
            for(TreeNode<K, V> xp, xpl, xpr; ; ){
                if(x == null || x == root)
                    return root;
                else if((xp = x.parent) == null){
                    x.red = false;
                    return x;
                }else if(x.red){
                    x.red = false;
                    return root;
                }else if((xpl = xp.left) == x){
                    if((xpr = xp.right) != null && xpr.red){
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if(xpr == null)
                        x = xp;
                    else{
                        TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        if((sr == null || !sr.red) &&
                           (sl == null || !sl.red)){
                            xpr.red = true;
                            x = xp;
                        }else{
                            if(sr == null || !sr.red){
                                if(sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if(xpr != null){
                                xpr.red = (xp == null) ? false : xp.red;
                                if((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if(xp != null){
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }else{ // symmetric
                    if(xpl != null && xpl.red){
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if(xpl == null)
                        x = xp;
                    else{
                        TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if((sl == null || !sl.red) &&
                           (sr == null || !sr.red)){
                            xpl.red = true;
                            x = xp;
                        }else{
                            if(sl == null || !sl.red){
                                if(sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if(xpl != null){
                                xpl.red = (xp == null) ? false : xp.red;
                                if((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if(xp != null){
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K, V> boolean checkInvariants(TreeNode<K, V> t){
            TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (TreeNode<K, V>) t.next;
            if(tb != null && tb.next != t)
                return false;
            if(tn != null && tn.prev != t)
                return false;
            if(tp != null && t != tp.left && t != tp.right)
                return false;
            if(tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if(tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if(t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if(tl != null && !checkInvariants(tl))
                return false;
            if(tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}