1.N皇后
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
横行,纵行和斜线都不行。
1.基于集合的回溯
class Solution { public: vector<vector<string>> solveNQueens(int n) { auto solutions = vector<vector<string>>(); auto queens = vector<int>(n, -1); auto columns = unordered_set<int>(); auto diagonals1 = unordered_set<int>(); auto diagonals2 = unordered_set<int>(); backtrack(solutions, queens, n, 0, columns, diagonals1, diagonals2); return solutions; } void backtrack(vector<vector<string>> &solutions, vector<int> &queens, int n, int row, unordered_set<int> &columns, unordered_set<int> &diagonals1, unordered_set<int> &diagonals2) { if (row == n) { vector<string> board = generateBoard(queens, n); solutions.push_back(board); } else { for (int i = 0; i < n; i++) { if (columns.find(i) != columns.end()) { continue; } int diagonal1 = row - i; if (diagonals1.find(diagonal1) != diagonals1.end()) { continue; } int diagonal2 = row + i; if (diagonals2.find(diagonal2) != diagonals2.end()) { continue; } queens[row] = i; columns.insert(i); diagonals1.insert(diagonal1); diagonals2.insert(diagonal2); backtrack(solutions, queens, n, row + 1, columns, diagonals1, diagonals2); queens[row] = -1; columns.erase(i); diagonals1.erase(diagonal1); diagonals2.erase(diagonal2); } } } vector<string> generateBoard(vector<int> &queens, int n) { auto board = vector<string>(); for (int i = 0; i < n; i++) { string row = string(n, '.'); row[queens[i]] = 'Q'; board.push_back(row); } return board; } };