思路:排序 + LIS。他的本质是算一个二维最长严格递增子序列,然后再用小红本身的H和A,去判断是否能够战胜最大的二维严格递增子序列结尾。如果可以的话,就更新ans = max(ans, dp[i]),最终输出ans即可
注意:这里排序是为了贪心的得到更长的二维最长严格递增子序列,而且题目只限制了h, a的值关系,位置可以改变
代码:
import sys
input = lambda: sys.stdin.readline().strip()
import math
inf = 10 ** 18
def I():
return input()
def II():
return int(input())
def MII():
return map(int, input().split())
def GMI():
return map(lambda x: int(x) - 1, input().split())
def LI():
return input().split()
def LII():
return list(map(int, input().split()))
def LFI():
return list(map(float, input().split()))
fmax = lambda x, y: x if x > y else y
fmin = lambda x, y: x if x < y else y
isqrt = lambda x: int(math.sqrt(x))
'''
'''
def solve():
n, H, A = LII()
h = LII()
a = LII()
nums = list(zip(h, a))
nums.sort()
dp = [0] * n
for i in range(n):
for j in range(i):
if nums[i][0] > nums[j][0] and nums[i][1] > nums[j][1]:
dp[i] = fmax(dp[i], dp[j])
dp[i] += 1
ans = 0
for i in range(n):
if H > nums[i][0] and A > nums[i][1]:
ans = fmax(ans, dp[i])
print(ans)
t = 1
# t = II()
for _ in range(t):
solve()

京公网安备 11010502036488号