import numpy as np
def linear_regression_gradient_descent(X, y, alpha, iterations):
#初始化参数
w = 0.0
b = 0.0
m = len(X)
for it in range(iterations):
dw = 0.0
db = 0.0
for i in range(len(X)):
x_i = X[i][1]
#预测值
y_hat = w*x_i+b
#误差
e = y_hat - y[i]
#求偏导 e对w和b的
dw += e*x_i
db += e
dw /= m
db/=m
#更新 w和b
w -= alpha * dw
b -= alpha * db
theta = np.array([b, w])
theta_1d = theta.flatten()
return np.round(theta_1d, 4)
# 主程序
if __name__ == "__main__":
# 输入矩阵和向量
matrix_inputx = input()
array_y = input()
alpha = input()
iterations = input()
# 处理输入
import ast
matrix = np.array(ast.literal_eval(matrix_inputx))
y = np.array(ast.literal_eval(array_y)).reshape(-1,1)
alpha = float(alpha)
iterations = int(iterations)
# 调用函数计算逆矩阵
output = linear_regression_gradient_descent(matrix,y,alpha,iterations)
# 输出结果
print(output)