一眼二分分天数,然后就是要找合适的高度满足操作数小于天数
两种方法:
二分的check函数里面三分高度,我们可以发现高度关于操作数是一个凹函数.
要注意临界值
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e5 + 7; ll a[maxn], n; ll cheak3(ll x) { ll ans = 0; for (int i = 1; i <= n; i++) ans += abs(a[i] - x); return ans; } int cheak(ll m) { // printf ("**\n"); for (int i = 1; i <= m % n; i++) a[i] += 1; ll l = 0, r = 1e9 + 7, mid1, mid2, t = 100, ans = 1e15; while (t--) { mid1 = (l + r) / 2; mid2 = (mid1 + r) / 2; if (cheak3(mid1) > cheak3(mid2)) l = mid1; else r = mid2; // printf ("%lld %lld\n",l,r); } for (int x = -20; x <= 20; x++) { if (l + x <= 0) continue; ans = min(ans, cheak3(l + x)); } for (int i = 1; i <= m % n; i++) a[i] -= 1; return ans <= m; } int main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cin >> n; for (int i = 1; i <= n; i++) cin >> a[i]; ll l = 1, r = 1e15, mid, ans = 1; //printf ("**\n"); while (l <= r) { mid = (l + r) / 2; if (cheak(mid)) ans = mid, r = mid - 1; else l = mid + 1; // printf ("%lld %lld\n",l,r); } printf("%lld\n", ans); return 0; }
第二种就是对变化后的水稻排序找中位数,合适的高度就是其中位数
推导
a为排序过的数组
从2开始: a1,a2要找一个h使操作数abs(a1-h)+abs(a2-h)=a2-a1,显然在a1,a2间均可;
然后到3: a1,a2,a3,由上面推得h要在a1,a3间,明显a2是最优,操作数是a3-a1;
然后到4: a1,a2,a3,a4,明显,最优h在a2,a3之间 操作数是a4-a1+a3-a2;
当为n时: 抽象在数轴上,即为求解点h使h到数轴上个点距离之和最近,推得是中位数
所以就能愉快的少一次三分hhh
#include <bits/stdc++.h> #define ll long long #define ios ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); using namespace std; const ll inf = 0x3f3f3f3f; const ll maxn = 1e5 + 7; ll a[maxn]; ll n; ll sum = 0; bool check(ll t) { ll b[maxn]; ll opsum1 = 0; ll add = t / n; ll tt = t % n; for (ll i = 1; i <= n; i++) { if (i > tt) b[i] = a[i] + add; else b[i] = a[i] + add + 1; } sort(b + 1, b + n + 1); for (int i = 1; i <= n / 2; i++) { opsum1 += b[n - i + 1] - b[i]; } return opsum1 <= t; } int main() { ios; cin >> n; for (ll i = 1; i <= n; i++) { cin >> a[i]; sum += a[i]; } ll l = 1, r = 1e15, mid, ans = 1; //printf ("**\n"); while (l <= r) { mid = (l + r) / 2; if (check(mid)) ans = mid, r = mid - 1; else l = mid + 1; // printf ("%lld %lld\n",l,r); } printf("%lld\n", ans); return 0; }