题意
给一颗 n个节点的树,初始时每条边的颜色都是黑色,现在有三种操作:
- 将第 i条边染黑,保证染色之前这条边为白色;
- 将第 i条边染白,保证染色之前这条边为黑色;
- 查询 x,y之间的最短路径,若 x,y之间的最短路径中有白色边则输出"-1", 否则输出 x,y距离.
做法
题目需要维护树上任意两点之间的边,很自然想到树链剖分,
树链剖分后的序列需要单点修改区间查询,因此可以用树状数组维护.
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
typedef pair<int, int> pii;
#define fi first
#define se second
#define empb emplace_back
int T[N], n, q;
void add(int x, int p) {
for(; x<=n; x+=x&-x)
T[x] += p;
}
int sum(int x) {
int ret = 0;
for(; x; x-=x&-x)
ret+=T[x];
return ret;
}
vector<int> E[N];
int dep[N], sz[N], son[N], fa[N], id[N], top[N];
int idx;
pair<int, int> P[N];
void dfs1(int u, int d) {
dep[u] = d; sz[u] = 1;
int &maxs = son[u];
for(int &v : E[u]) if(v != fa[u]) {
fa[v] = u; dfs1(v, d + 1);
sz[u] += sz[v];
if(sz[v] > sz[maxs])
maxs = v;
}
}
void dfs2(int u, int tp) {
top[u] = tp; id[u] = ++idx;
if(son[u]) dfs2(son[u], tp);
for(int &v : E[u])
if(v != son[u] && v != fa[u])
dfs2(v, v);
}
int solve(int u, int v) {
int uu = top[u], vv = top[v], ret = 0;
while(uu != vv) {
if(dep[uu] < dep[vv]) swap(u, v), swap(uu, vv);
if(sum(id[u]) - sum(id[uu] - 1)) return -1;
ret += dep[u] - dep[uu] + (uu != fa[uu]);
u = fa[uu], uu = top[u];
}
if(dep[u] < dep[v]) swap(u, v);
if(sum(id[u]) - sum(id[v])) return -1;
return ret + dep[u] - dep[v];
}
int main() {
#ifdef local
freopen("in.txt", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
cin >> n;
for(int i = 1, u, v; i < n; i++) {
cin >> u >> v; P[i] = pii(u, v);
E[u].empb(v), E[v].empb(u);
}
dfs1(1, 1), dfs2(1, 1);
cin >> q;
for(int i = 0, op, x, y; i < q; i++) {
cin >> op;
if(op == 1) {
cin >> x; y = P[x].se, x = P[x].fi;
if(dep[x] < dep[y]) swap(x, y);
add(id[x], -1);
} else if(op == 2) {
cin >> x; y = P[x].se, x = P[x].fi;
if(dep[x] < dep[y]) swap(x, y);
add(id[x], 1);
} else {
cin >> x >> y;
cout << solve(x, y) << endl;
}
}
return 0;
}