题目

  • 地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

思路

  • 本题的主要核心是统计机器人所能达到的格子总数,该函数作用就是统计总数movingCountCore
  • 所以需要确定机器人起始点后,开始确认机器人能否到达起点的“前、后、左、右”四个点,这就是用check函数判断某个格子是否为到达点
  • 判断函数中有一项重要点:格子坐标位数之和小于规定值,并且是没有去过的点,否则失败

代码

  • 剑指offer思路
public class Solution {
    public int movingCount(int threshold, int rows, int cols){
        if(threshold<0 || rows<=0 || cols<=0)
            return 0;
        Boolean[] flag = new Boolean[rows*cols];
        for(int i=0;i<flag.length;i++){
            flag[i]=false;
        }
        int count = movingCountCore(threshold,rows,cols,0,0,flag);
        return count;
    }
    public int movingCountCore(int threshold,int rows,int cols,int row,int col,Boolean[] flag){
        int count=0;
        if(check(threshold,rows,cols,row,col,flag)==true){
            flag[row*rows+col]=true;
            count = 1
                    +movingCountCore(threshold,rows,cols,row-1,col,flag)
                    +movingCountCore(threshold,rows,cols,row,col-1,flag)
                    +movingCountCore(threshold,rows,cols,row+1,col,flag)
                    +movingCountCore(threshold,rows,cols,row,col+1,flag);
        }
        return count;
    }
    public boolean check(int threshold,int rows,int cols,int row,int col,Boolean[] flag){
        if(row>=0 && col>=0 && col<cols && row<rows && 
           (getDigitSum(col)+getDigitSum(row))<=threshold && flag[row*rows+col]==false){
            return true;
        }
        return false;
    }
    public int getDigitSum(int number){
        int sum =0;
        while(number>0){
            sum+=number%10;
            number/=10;
        }
        return sum;
    }
}
  • 牛客代码

链接:https://www.nowcoder.com/questionTerminal/6e5207314b5241fb83f2329e89fdecc8
来源:牛客网

public class Solution {
    public int movingCount(int threshold, int rows, int cols)
    {
        if(threshold < 0 || rows <= 0 || cols <= 0) {
            return 0;
        }
        boolean [] visited = new boolean[rows * cols];
        for(int i = 0; i < rows * cols; i ++) {
            visited[i] = false;
        }
        int count = movingCountCore(threshold, rows, cols, 0, 0, visited);
        return count;
    }
     
    public int movingCountCore(int threshold,int rows,int cols,int row,int col,boolean[] visited) {
        int count = 0;
        if(check(threshold, rows, cols, row, col, visited)) {
            visited[row * cols + col] = true;
            count = 1 + movingCountCore(threshold, rows, cols, row - 1, col, visited)    //左
                        + movingCountCore(threshold, rows, cols, row, col - 1, visited)    //上
                        + movingCountCore(threshold, rows, cols, row + 1, col, visited)    //右
                        + movingCountCore(threshold, rows, cols, row, col + 1, visited);    //下
        }
        return count;
    }
     
    public boolean check(int threshold, int rows ,int cols, int row, int col, boolean[] visited) {
        if(row >= 0 && row < rows && col >= 0 && col < cols && getDigitSum(row) + getDigitSum(col) <= threshold && !visited[row * cols + col]) {
            return true;
        } 
        return false;
    }
     
    public int getDigitSum(int number) {
        int sum = 0;
        while(number > 0) {
            sum += number % 10;
            number /= 10;
        }
        return sum;
    }
}