思路
矩阵加速递推基础题.
因为,可以构造出矩阵.
然后跑矩阵快速幂即可.矩阵构造方法很多,怎么构造开心就好.
注意一些小细节,因为可能是
,最后输出是也最好取模一下.
平时写矩阵就注意下常数优化.毕竟矩阵乘法的常数还是比较大的.
代码
#include<bits/stdc++.h>
using namespace std;
#define i64 long long
#define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i )
#define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i )
#define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] )
template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; }
template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; }
template<typename T>
inline void read( T &x ){ char t(getchar()), flg(0); x = 0;
for ( ; !isdigit(t); t = getchar() ) flg = t == '-';
for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 );
flg ? x = -x : x;
}
clock_t t_bg, t_ed;
int N, M;
struct mat{
int a[2][2];
mat operator * ( mat t ){
mat r; memset( r.a, 0, 16 );
fp( i, 0, 1 ) fp( k, 0, 1 ) fp( j, 0, 1 ) r.a[i][j] = ( r.a[i][j] + 1ll * a[i][k] * t.a[k][j] ) % M;
return r;
}
}o, t;
int main(){
t_bg = clock();
read(N), read(M);
if ( N <= 2 ) return printf( "%d\n", 1 % M ), 0;
t.a[0][0] = t.a[0][1] = 1;
o.a[0][0] = o.a[1][0] = o.a[0][1] = 1;
for ( int i = N - 2; i; i >>= 1, o = o * o ) if ( i & 1 ) t = t * o;
printf( "%d\n", t.a[0][0] % M );
t_ed = clock();
fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC );
return 0;
}

京公网安备 11010502036488号