LC743.网络延迟时间 (微信公众号@宫水三叶的刷题日记)

alt alt alt

  • 三叶大佬总结的太好了,先搬过来再慢慢理解;比较好理解的建图方式为邻接矩阵。 alt
class Solution {
    int N = 110, M = 6010;
    // 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
    int[][] w = new int[N][N];
    int INF = 0x3f3f3f3f;
    int n , k;

    public int networkDelayTime(int[][] times, int _n, int _k) {
        n = _n; k = _k;
        // 初始化邻接矩阵
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                w[i][j] = w[j][i] = i == j ? 0 : INF;
            }
        }
        // 存图
        for (int[] t : times) {
            int u = t[0], v = t[1], c = t[2];
            w[u][v] = c;
        }
        // 最短路
        floyd();
        // 遍历答案
        int ans = 0;
        for (int i =1; i <= n; i++) {
            ans = Math.max(ans, w[k][i]);
        }
        return ans >= INF ? -1 : ans;
    }
    void floyd() {
        // floyd 基本流程为三层循环:
        // 枚举中转点 - 枚举起点 - 枚举终点 - 松弛操作    
        for (int p = 1; p <= n; p++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    w[i][j] = Math.min(w[i][j], w[i][p] + w[p][j]);
                }
            }
        }
    }
}

alt

class Solution {
    int N = 110, M = 6010;
    // 邻接矩阵数组:w[a][b] = c 代表从 a 到 b 有权重为 c 的边
    int[][] w = new int[N][N];
    // dist[x] = y 代表从「源点/起点」到 x 的最短距离为 y
    int[] dist = new int[N];
    // 记录哪些点已经被更新过
    boolean[] vis = new boolean[N];
    int INF = 0x3f3f3f3f;
    int n, k;
    public int networkDelayTime(int[][] times, int _n, int _k) {
        n = _n; k = _k;
        // 初始化邻接矩阵
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                w[i][j] = w[j][i] = i == j? 0 : INF;
            }
        }
        // 存图
        for (int[] t : times) {
            int u = t[0], v = t[1], c = t[2];
            w[u][v] = c;
        }
        // 最短路
        dijkstra();
        // 遍历答案
        int ans = 0;
        for (int i = 1; i <= n; i++) {
            ans = Math.max(ans, dist[i]);
        }
        return ans >= INF ? -1 : ans;
    }
    private void dijkstra() {
        // 起始先将所有的点标记为「未更新」和「距离为正无穷」
        Arrays.fill(vis, false);
        Arrays.fill(dist, INF);
        // 只有起点最短距离为 0
        dist[k] = 0;
        // 迭代 n 次
        for (int p = 1; p <= n; p++) {
             // 每次找到「最短距离最小」且「未被更新」的点 t
            int t = -1;
            for (int i = 1; i <= n; i++) {
                if (!vis[i] && (t == -1 || dist[i] < dist[t])) t = i;
            }
            // 标记点 t 为已更新
            vis[t] = true;
            // 用点 t 的「最小距离」更新其他点
            for (int i = 1; i <= n; i++) {
                dist[i] = Math.min(dist[i], dist[t] + w[t][i]);
            }
        }
    }
}

Tip:

  • Dijkstra算法:计算从一个点到其余各顶点的最短路径(各边权重必须为正数);
  • Floyed算法:计算任意两点之间的最短路径