题目描述

Farmer John has purchased a new robotic plow in order to relieve him from the drudgery of plowing field after field after field. It achieves this goal but at a slight disadvantage: the robotic plow can only plow in a perfect rectangle with sides of integer length.
Because FJ's field has trees and other obstacles, FJ sets up the plow to plow many different rectangles, which might end up overlapping. He's curious as to just how many squares in his field are actually plowed after he programs the plow with various plow instructions, each of which describes a rectangle by giving its lower left and upper right x,y coordinates.
As usual, the field is partitioned into squares whose sides are parallel to the x and y axes. The field is X squares wide and Y squares high . Each of the plow instructions comprises four integers: Xll, Yll, Xur, and Yur () which are the lower left and upper right coordinates of the rectangle to be plowed. The plow will plow all the field's squares in the range (Xll..Xur, Yll..Yur) which might be one more row and column than would initially be assumed (depending on how you go about your assumptions, of course).

Consider a field that is 6 squares wide and 4 squares high. As FJ issues a pair of plowing instructions (shown), the field gets plowed as shown by '*' and '#' (normally plowed field all looks the same, but '#' shows which were most recently plowed):
......                               **....                            #####. 
......      (1,1)(2,4)           **....       (1,3)(5,4)       #####.
......                              **....                            **....
......                              **....                           **....
A total of 14 squares are plowed.

POINTS: 25

输入描述:

* Line 1: Three space-separated integers: X, Y, and I
* Lines 2..I+1: Line i+1 contains plowing instruction i which is described by four integers: Xll, Yll, Xur, and Yur

输出描述:

* Line 1: A single integer that is the total number of squares plowed

示例1

输入
6 4 2 
1 1 2 4 
1 3 5 4 
输出
14
说明
As in the task's example.

解答

直接模拟
也可以写差分

关于一个直接模拟的常数优化
不用填完之后再扫一遍统计答案
填的时候判断一下当前点的状态
直接++ans即可

代码:
#include<bits/stdc++.h>
#define MAXN 1001
using namespace std;
template <typename T> void read(T &x){
	x=0;int f=1;char ch=getchar();
	for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
	for(;isdigit(ch);ch=getchar())x=(x<<1)+(x<<3)+ch-'0';
	x*=f;
}
int n,m,num,xI,yI,xII,yII;
int tot;
bool maz[MAXN][MAXN];
int main(){
	read(m),read(n);
	read(num);
	for(int ti=1;ti<=num;++ti){
		read(xI),read(yI),read(xII),read(yII);
		for(int i=xI;i<=xII;++i)
			for(int j=yI;j<=yII;++j)
				if(!maz[i][j])maz[i][j]=1,++tot;
	}
	printf("%d\n",tot);
 	return 0;
}
差分用在这一题显然有些小题大做
但差分的思想通常在很多题目中都可以加速暴力
在每一行的起始点打上+1的标记 终止点打上-1的标记
最后输出前缀和即是当前点被填了多少次
当问题是该地一共操作了多少次
差分的优势就显而易见了
以及注意这一题的n,m
思考好和通常我们用的行和列的差别
输入时改变一下赋值就好了


来源:xh_0319