I let fat tension
I 题题意:给定 n 个 k 维向量 {Xi},和 n 个 d 维向量 {Yi},求 Yj′=i=1∑n∣Xi∣∣Xj∣Xi⋅XjYi。n≤1×104,k,d≤50。
解法:
⎣⎢⎢⎢⎢⎢⎡Y1′Y2′Y3′⋮Yn′⎦⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡∣X1∣∣X1∣X1⋅X1∣X2∣∣X1∣X2⋅X1∣X3∣∣X1∣X3⋅X1⋮∣Xn∣∣X1∣Xn⋅X1∣X1∣∣X2∣X1⋅X2∣X2∣∣X2∣X2⋅X2∣X3∣∣X2∣X3⋅X2⋮∣Xn∣∣X2∣Xn⋅X2∣X1∣∣X3∣X1⋅X3∣X2∣∣X3∣X2⋅X3∣X3∣∣X3∣X3⋅X3⋮∣Xn∣∣X3∣Xn⋅X3⋯⋯⋯⋱⋯∣X1∣∣Xn∣X1⋅Xn∣X2∣∣Xn∣X2⋅Xn∣X3∣∣Xn∣X3⋅Xn⋮∣Xn∣∣Xn∣Xn⋅Xn⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎡Y1Y2Y3⋮Yn⎦⎥⎥⎥⎥⎥⎤
考虑 Xi′=∣Xi∣Xi,则有:
⎣⎢⎢⎢⎢⎢⎡Y1′Y2′Y3′⋮Yn′⎦⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎡X1′X2′X3′⋮Xn′⎦⎥⎥⎥⎥⎥⎤[X1′X2′X3′⋯Xn′]⎣⎢⎢⎢⎢⎢⎡Y1Y2Y3⋮Yn⎦⎥⎥⎥⎥⎥⎤
注意到右侧三个矩阵大小分别为 (n,k),(k,n),(n,d),因而先计算后面两个矩阵的乘积再计算和第一个的乘积,复杂度仅为 O(2knd)。
#include <bits/stdc++.h>
using namespace std;
vector<vector<double>> operator*(vector<vector<double>> a, vector<vector<double>> b)
{
int n = a.size(), m = a[0].size(), k = b[0].size();
vector<vector<double>> ans(n, vector<double>(k, 0));
for (int i = 0; i < n;i++)
for (int j = 0; j < k;j++)
for (int l = 0; l < m;l++)
ans[i][j] += a[i][l] * b[l][j];
return ans;
}
int main()
{
int n, k, d;
scanf("%d%d%d", &n, &k, &d);
vector<vector<double>> a(n, vector<double>(k)), b(k, vector<double>(n)), c(n, vector<double>(d));
for (int i = 0; i < n;i++)
{
double all = 0;
for (int j = 0; j < k;j++)
{
scanf("%lf", &a[i][j]);
all += a[i][j] * a[i][j];
}
all = sqrt(all);
for (int j = 0; j < k; j++)
{
a[i][j] /= all;
b[j][i] = a[i][j];
}
}
for (int i = 0; i < n;i++)
for (int j = 0; j < d;j++)
scanf("%lf", &c[i][j]);
auto ans = a * (b * c);
for(auto i:ans)
{
for (auto j : i)
printf("%.10lf ", j);
printf("\n");
}
return 0;
}