情况3 很容易考虑不到
非递减排序 说明可能有相同的值
注意 情况2是 right = mid
mid = left + ((right - left) >> 1); 这么写保险
这里我们把target 看作是右端点,来进行分析,那就要分析以下三种情况,看是否可以达到上述的目标。
情况1,arr[mid] > target:4 5 6 1 2 3
arr[mid] 为 6, target为右端点 3, arr[mid] > target, 说明[first ... mid] 都是 >= target 的,因为原始数组是非递减,所以可以确定答案为 [mid+1...last]区间,所以 first = mid + 1
情况2,arr[mid] < target:5 6 1 2 3 4
arr[mid] 为 1, target为右端点 4, arr[mid] < target, 说明答案肯定不在[mid+1...last],但是arr[mid] 有可能是答案,所以答案在[first, mid]区间,所以last = mid;
情况3,arr[mid] == target:
如果是 1 0 1 1 1, arr[mid] = target = 1, 显然答案在左边
如果是 1 1 1 0 1, arr[mid] = target = 1, 显然答案在右边
所以这种情况,不能确定答案在左边还是右边,那么就让last = last - 1;慢慢缩少区间,同时也不会错过答案。
import java.util.ArrayList; public class Solution { public int minNumberInRotateArray(int [] array) { int right,left,mid; right = array.length -1; left = 0; if(right == -1) return 0; mid = 0; while(left < right){ mid = left + ((right - left) >> 1); if(array[mid]<array[right]){ right = mid; } else if (array[mid]>array[right]){ left = mid + 1; } else{ right--; } } return array[left]; } }