class Solution {
//图论解法,以出度为0为一层的开始。
public:
//记录四个方向
int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int n, m;
int solve(vector<vector<int> >& matrix) {
//空矩阵
if (matrix.size() == 0 || matrix[0].size() == 0)
return 0;
n = matrix.size();
m = matrix[0].size();
//记录每个单元的出度
vector<vector<int> > outdegrees(n, vector<int> (m));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
for (int k = 0; k < 4; k++) {
int nexti = i + dirs[k][0];
int nextj = j + dirs[k][1];
if (nexti >= 0 && nexti < n && nextj >= 0 && nextj < m &&
matrix[nexti][nextj] > matrix[i][j]) {
//符合条件,记录出度
outdegrees[i][j]++;
}
}
}
}
queue <pair<int, int> > q;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
if (outdegrees[i][j] == 0)
//找到出度为0的入队列
q.push({i, j});
int res = 0;
//bfs,图论解法
//每一次直接把一层的循环完,然后寻找出度为0的点,因为我们一开始就是按照出度为0开始加入列的。
//以出度为0为一层的开始。
while (!q.empty()) {
res++;
int size = q.size();
for (int x = 0; x < size; x++) {//每一次直接把一层的循环完
pair<int, int> temp = q.front();
q.pop();
int i = temp.first;
int j = temp.second;
//四个方向
for (int k = 0; k < 4; k++) {
int nexti = i + dirs[k][0];
int nextj = j + dirs[k][1];
//逆向搜索,所以下一步是小于
if (nexti >= 0 && nexti < n && nextj >= 0 && nextj < m &&
matrix[nexti][nextj] < matrix[i][j]) {
//符合条件,出度递减
outdegrees[nexti][nextj]--;
if (outdegrees[nexti][nextj] == 0) {
q.push({nexti, nextj});
}
}
}
}
}
return res;
}
};