思路:

首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了)。

与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点棘手诶,这是一种非常经典的题型,我们可以发现,一个点最多只有一个父亲!!!那,我们显然就可以用这个点的点权去代替它与它父亲之间的边权!!!然后这道题不就成了树链剖分水题了嘛?刚开始边权都是\(0\),那我们就根据题目给的边建边权为\(0\)的边。

\(nonono\),还有一个坑点就是在路径查询和修改的时候,两点的\(LCA\)的点权是不能算在其中的,因为它的点权是\(LCA\)\(LCA\)父亲之间边的边权,注意这几个问题,那这题就真的是水题了!

自己整理的题解

具体实现看代码:

#include<cstdio>
#include<algorithm>
#include<cctype>
#define maxn 100007
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
int n,m,head[maxn],d[maxn],son[maxn],siz[maxn],id[maxn],w[maxn];
int num,cnt,sum[maxn<<2],lazy[maxn<<2],top[maxn],fa[maxn],a[maxn];
char s[3];
inline int qread() {
  char c=getchar();int num=0,f=1;
  for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
  for(;isdigit(c);c=getchar()) num=num*10+c-'0';
  return num*f;
}
struct node {
  int v,w,nxt;
}e[maxn<<1];
inline void ct(int u, int v, int w) {
  e[++num].v=v;
  e[num].w=w;
  e[num].nxt=head[u];
  head[u]=num;
}
inline void pushup(int rt) {
  sum[rt]=sum[ls]+sum[rs];
}
void build(int rt, int l, int r) {
  if(l==r) {
    sum[rt]=a[l];
    return;
  }
  int mid=(l+r)>>1;
  build(ls,l,mid);
  build(rs,mid+1,r);
  pushup(rt);
}
inline void pushdown(int rt, int len) {
  if(lazy[rt]) {
    sum[ls]+=(len-(len>>1))*lazy[rt];
    sum[rs]+=(len>>1)*lazy[rt];
    lazy[ls]+=lazy[rt],lazy[rs]+=lazy[rt];
    lazy[rt]=0;
  }
}
void modify(int rt, int l, int r, int L, int R, int val) {
  if(L>r||R<l) return;
  if(L<=l&&r<=R) {
    sum[rt]+=(r-l+1)*val;
    lazy[rt]+=val;
    return;
  }
  pushdown(rt,r-l+1);
  int mid=(l+r)>>1;
  modify(ls,l,mid,L,R,val),modify(rs,mid+1,r,L,R,val);
  pushup(rt);
}
int csum(int rt, int l, int r, int L, int R) {
  if(L>r||R<l) return 0;
  if(L<=l&&r<=R) return sum[rt];
  pushdown(rt,r-l+1);
  int mid=(l+r)>>1;
  return csum(ls,l,mid,L,R)+csum(rs,mid+1,r,L,R);
}
void dfs1(int u) {
  siz[u]=1;
  for(int i=head[u];i;i=e[i].nxt) {
    int v=e[i].v;
    if(v!=fa[u]) {
      d[v]=d[u]+1;
      fa[v]=u;
      w[u]=e[i].w;
      dfs1(v);
      siz[u]+=siz[v];
      if(siz[v]>siz[son[u]]) son[u]=v;
    }
  }
}
void dfs2(int u, int t) {
  id[u]=++cnt;
  top[u]=t;
  a[cnt]=w[u];
  if(son[u]) dfs2(son[u],t);
  for(int i=head[u];i;i=e[i].nxt) {
    int v=e[i].v;
    if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
  }
}
void cal(int x, int y) {
  int fx=top[x],fy=top[y];
  while(fx!=fy) {
    if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
    modify(1,1,cnt,id[fx],id[x],1);
    x=fa[fx],fx=top[x];
  }
  if(id[x]>id[y]) swap(x,y);
  modify(1,1,cnt,id[x]+1,id[y],1);
}
int query(int x, int y) {
  int fx=top[x],fy=top[y],ans=0;
  while(fx!=fy) {
    if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
    ans+=csum(1,1,cnt,id[fx],id[x]);
    x=fa[fx],fx=top[x];
  }
  if(id[x]>id[y]) swap(x,y);
  ans+=csum(1,1,cnt,id[x]+1,id[y]);
  return ans;
}
int main() {
  n=qread(),m=qread();
  for(int i=1,u,v;i<n;++i) {
    u=qread(),v=qread();
    ct(u,v,0);ct(v,u,0);
  }
  dfs1(1);dfs2(1,1);build(1,1,n);
  for(int i=1,u,v;i<=m;++i) {
    scanf("%s",s);
    u=qread(),v=qread();
    if(s[0]=='P') cal(u,v);
    else printf("%d\n",query(u,v));
  }
  return 0;
}