题意
给出n(n ≤ 2e5)个数,m(m ≤ 2e5)个询问,每个数的大小(0 < ai ≤ 2e5)。对于每个询问输入l,r,表示al ... ar这个区间得到的每个数第一次出现的位置下标的排列,假设这个区间有k个不同的数,得到的排列是p1 < p2 < p3 < ... < pk,求第(k + 1) / 2个数是多少?
题解
对于给出的数列,我们可以从后往前依次插入主席树(如果该数字之前出现过,则在之前下标处减1),这样我们可以用O(logn)的时间复杂度在第l棵线段树上求出给定l到r区间有多少个不同的数字(假设有k个),然后再用O(logn)的时间复杂度在第l棵线段树上求第(k + 1) / 2小的数就好了,总时间复杂度O(nlogn)。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
struct node{
int ls, rs, val;
}tree[maxn * 40];
int arr[maxn], rot[maxn], pos[maxn], ans[maxn];
int tot, t, n, m;
inline int read(){
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();
return s * w;
}
inline void print(int x){
if(x < 0) x = ~x + 1, putchar('-');
if(x > 9) print(x / 10);
putchar(x % 10 + '0');
}
inline void init(){
tot = 0;
memset(pos, 0, sizeof(pos));
}
int Build(int l, int r){
int root = ++tot;
if(l == r) return root;
int mid = (l + r) >> 1;
tree[root].ls = Build(l, mid);
tree[root].rs = Build(mid + 1, r);
return root;
}
int UpDate(int root, int l, int r, int vis, int val){
int o = ++tot;
tree[o].ls = tree[root].ls;
tree[o].rs = tree[root].rs;
tree[o].val = tree[root].val + val;
if(l == r) return o;
int mid = (l + r) >> 1;
if(vis <= mid) tree[o].ls = UpDate(tree[o].ls, l, mid, vis, val);
else tree[o].rs = UpDate(tree[o].rs, mid + 1, r, vis, val);
return o;
}
int Query(int root, int l, int r, int x, int y){
if(l >= x && r <= y) return tree[root].val;
int mid = (l + r) >> 1;
if(y <= mid) return Query(tree[root].ls, l, mid, x, y);
else if(x > mid) return Query(tree[root].rs, mid + 1, r, x, y);
else return Query(tree[root].ls, l, mid, x, mid) + Query(tree[root].rs, mid + 1, r, mid + 1, y);
}
int Find(int root, int l, int r, int k){
if(l == r) return l;
int mid = (l + r) >> 1;
int res = tree[tree[root].ls].val;
if(res >= k) return Find(tree[root].ls, l, mid, k);
else return Find(tree[root].rs, mid + 1, r, k - res);
}
int main(){
t = read();
for(int tt = 1; tt <= t; tt++){
init();
n = read(), m = read();
rot[n + 1] = Build(1, n);
for(int i = 1; i <= n; i++) arr[i] = read();
for(int i = n; i >= 1; i--){
if(pos[arr[i]]){
rot[i] = UpDate(rot[i + 1], 1, n, pos[arr[i]], -1);
rot[i] = UpDate(rot[i], 1, n, i, 1);
}
else{
rot[i] = UpDate(rot[i + 1], 1, n, i, 1);
}
pos[arr[i]] = i;
}
for(int ca = 1; ca <= m; ca++){
int l, r;
l = read(), r = read();
l = (l + ans[ca - 1]) % n + 1;
r = (r + ans[ca - 1]) % n + 1;
if(l > r) swap(l, r);
int k = (Query(rot[l], 1, n, l, r) + 1) / 2;
ans[ca] = Find(rot[l], 1, n, k);
}
printf("Case #%d:", tt);
for(int i = 1; i <= m; i++) putchar(' '), print(ans[i]);
putchar('\n');
}
return 0;
}

京公网安备 11010502036488号