中文题意
给你个节点的一棵树,并且存在
次操作,每次操作把节点
之间路径上全部的点权值加一。问操作
次操作后整棵树最大的权值是多少?
Solution
读懂题的话,就是树上差分模板题,我实现的办法是树链剖分,会了之后就觉得比倍增快乐多了。给个OIWiki的差分链接
树上点差分就是:
#include <bits/stdc++.h>
using namespace std;
#define rep(i, sta, en) for(int i=sta; i<=en; ++i)
#define repp(i, sta, en) for(int i=sta; i>=en; --i)
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); }
const int N = 5e4 + 7;
int n, m;
int fa[N], dep[N], sz[N], son[N], top[N];
vector<int> edge[N];
void dfs1(int u) {
son[u] = -1;
sz[u] = 1;
for (auto& v : edge[u]) {
if (dep[v]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs1(v);
sz[u] += sz[v];
if (son[u] == -1 or sz[v] > sz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int t) {
top[u] = t;
if (son[u] == -1) return;
dfs2(son[u], t);
for (auto& v : edge[u])
if (v != son[u] and v != fa[u]) dfs2(v, v);
}
int lca(int u, int v) {
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]])
u = fa[top[u]];
else
v = fa[top[v]];
}
return dep[u] > dep[v] ? v : u;
}
int f[N], maxi;
void dfs3(int u, int fa) {
for (auto& v : edge[u]) {
if (v == fa) continue;
dfs3(v, u);
f[u] += f[v];
}
maxi = max(maxi, f[u]);
}
void solve() {
n = read(), m = read();
rep(i, 2, n) {
int u = read(), v = read();
edge[u].push_back(v);
edge[v].push_back(u);
}
dep[1] = 1;
dfs1(1);
dfs2(1, 1);
while (m--) {
int u = read(), v = read(), tmp = lca(u, v);
++f[u], --f[tmp];
++f[v], --f[fa[tmp]];
}
dfs3(1, 0);
print(maxi);
}
int main() {
//int T = read(); rep(_, 1, T)
{
solve();
}
return 0;
} 
京公网安备 11010502036488号