题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1997

题意:给定一个图和一个哈密顿回路,判定是否是平台图。

解法: 用平面图m<=3n-6的性质剪枝条

若两条边在圆内相交,则他们在圆外也是相交的,即若a,b不能同时取,a’,b’也不能同时取

按2-sat建模缩点后判断合法性


///BZOJ 1997 平面图判定

#include <bits/stdc++.h>
using namespace std;
const int maxn = 10005;
int T, n, m, dfs_clk, top, scc, edgecnt;
int u[maxn], v[maxn], c[maxn], pos[maxn];
int head[maxn], dfn[maxn], low[maxn], s[maxn], belong[maxn];
bool inq[maxn];
struct edge{
    int v,next;
}E[1000010];
void init(){
    edgecnt=0;
    memset(head, -1, sizeof(head));
    memset(low, 0, sizeof(low));
    memset(dfn, 0, sizeof(dfn));
    memset(belong, 0, sizeof(belong));
    dfs_clk=top=scc=0;
}
void addedge(int u, int v){
    E[edgecnt].v = v, E[edgecnt].next = head[u], head[u] = edgecnt++;
}
void tarjan(int x){
    int now=0;
    dfn[x]=low[x]=++dfs_clk;
    s[++top]=x; inq[x]=1;
    for(int i=head[x];i+1;i=E[i].next){
        int v=E[i].v;
        if(!dfn[v]){
            tarjan(v);
            low[x]=min(low[x],low[v]);
        }
        else if(inq[v]){
            low[x]=min(low[x],dfn[v]);
        }
    }
    if(low[x]==dfn[x]){
        scc++;
        while(now!=x){
            now=s[top]; top--;
            belong[now]=scc;
            inq[now]=0;
        }
    }
}

int main()
{
    scanf("%d", &T);
    while(T--){
        scanf("%d%d", &n,&m);
        for(int i=1; i<=m; i++) scanf("%d%d", &u[i],&v[i]);
        init();
        for(int i=1; i<=n; i++) scanf("%d", &c[i]);
        if(m>3*n-6){
            puts("NO");
            continue;
        }
        for(int i=1; i<=n; i++) pos[c[i]]=i;
        int cur=0;
        for(int i=1; i<=m; i++){
            u[i]=pos[u[i]];
            v[i]=pos[v[i]];
            if(u[i]>v[i]) swap(u[i],v[i]);
            if(v[i]-u[i]==1||(v[i]==n&&u[i]==1)) continue;
            u[++cur]=u[i], v[cur]=v[i];
        }
        cur=m;
        for(int i=1; i<=m; i++){
            for(int j=i+1; j<=m; j++){
                if((u[i]<u[j]&&u[j]<v[i]&&v[i]<v[j])||(u[j]<u[i]&&u[i]<v[j]&&v[j]<v[i])){
                    addedge(2*i-1,2*j);
                    addedge(2*i,2*j-1);
                    addedge(2*j-1,2*i);
                    addedge(2*j,2*i-1);
                }
            }
        }
        for(int i=1; i<=2*m; i++) if(!dfn[i]) tarjan(i);
        bool flag = 1;
        for(int i=1; i<=m; i++){
            if(belong[i*2]==belong[i*2-1]){
                flag = 0;
            }
        }
        puts(flag?"YES":"NO");
    }
    return 0;
}