题目链接

P3160 [CQOI2012]局部极小值

双倍经验,双倍快乐

解题思路

存下来每个坑(极小值点)的位置,以这个序号进行状态压缩。

显然,\(4*7\)的数据范围让极小值点在8个以内(以下示意)

X . X . X . X .
. . . . . . . .
X . X . X . X .
. . . . . . . .

所以考虑用\(S\)表示各个极小值点是否已填的状态,枚举\(1-n*m\)进行状压\(DP\)

当前填的数有两种选择:

\(1\))填入坑中,这样枚举\(S\)状态表示的每一个已填的坑,\(f[i][S]+=\)\(\sum_{k|((1<<k)\&S==0)}^{} {f[i-1][S-(1<<k)]}\)\(k\)表示第\(k\)个坑是没填过的)(这步的意思是:\(S-(1<<k)\)这个状态没有填\(k\)位置的坑,我现在\(i\)要填这个坑的种类数就是\(f[i-1][S-(1<<k)]\)

\(2\))不填入坑中,这样枚举每一个点,如果可以填(指如果有坑还没填,那么他旁边以及他本身共\(9\)个格都不能填东西,否则这个坑继续往后填填不成极小值),那么就是一种新的填法,数出来\(tot\)种填法,那么\(dp[i][S]+=dp[i-1][S]*(tot-i+1)\)。然后发现枚举不是很好,可以进行预处理,处理出每一个状态对应的\(tot\)(代码中用\(hi[S]\)表示)。

然后答案就是\(f[m*n][(1<<num)-1]\)。(\(num\)代表坑的个数)

然后因为是胡乱填数,于是可能会出现不应该是坑的地方变成坑的情况,于是就在每个可能出现坑的地方分别新加一个坑进行\(DP\),完了再减去。而这个\(DP\)又带来新的可能填的坑......而这就是个容斥问题了。

AC代码

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
char a[10];
int m,n,min[6][10];//描述整个矩阵 
int num,x[30],y[30];//描述坑的个数、位置 
int w=12345678;//膜 
int dx[10]={-1,-1,-1,0,0,1,1,1,0};//移动位置 
int dy[10]={-1,0,1,-1,1,-1,0,1,0};
int vis[6][10],f[29][(1<<8)+10],hi[1<<9];//dp用到的东西 
int dp(){
    int i,j,k;
    memset(f,0,sizeof(f));
    f[0][0]=1;
    for(i=0;i<(1<<num);i++){//预处理出每个状态i对应的可填点数量 
        hi[i]=n*m;
        memset(vis,0,sizeof(vis));
        for(j=0;j<num;j++)if(!(i&(1<<j)))for(k=0;k<9;k++)vis[x[j]+dx[k]][y[j]+dy[k]]=1;
        for(j=1;j<=n;j++)for(k=1;k<=m;k++)if(vis[j][k])hi[i]--;
    }
    for(i=1;i<=n*m;i++){//枚举填哪个数 
        for(j=0;j<(1<<num);j++){//枚举状态 
            if(hi[j]-i+1>0)f[i][j]+=f[i-1][j]*(hi[j]-i+1),f[i][j]%=w;
            for(k=0;k<num;k++)if((1<<k)&j)f[i][j]+=f[i-1][j^(1<<k)],f[i][j]%=w;
        }
    }
    return f[n*m][(1<<num)-1];
}
int dfs(int X,int Y){
    if(Y==m+1)X++,Y=1;
    if(X==n+1)return dp();
    int i,ans=dfs(X,Y+1);
    for(i=0;i<9;i++)if(min[X+dx[i]][Y+dy[i]])return ans;
    //如果没return说明这个地方是个可能变成坑的地方,那就把它变成坑dfs一下 
    x[num]=X;y[num++]=Y;min[X][Y]=1;
    ans-=dfs(X,Y+1),ans=(ans+w)%w;
    min[X][Y]=0;num--;//别忘了变回去 
    return ans;
}
int main(){
    int i,j;
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++){
        scanf("%s",a+1);
        for(j=1;j<=m;j++)if(a[j]=='X'){
            min[i][j]=1;
            x[num]=i;y[num++]=j;
        }
    }
    for(i=0;i<num;i++)for(j=0;j<i;j++)if(abs(x[i]-x[j])<2&&abs(y[i]-y[j])<2)return printf("0"),0;
    if(!num)return printf("0"),0;
    printf("%d",dfs(1,1));
    return 0;
}