题目地址
对于 <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> <mstyle displaystyle="true" scriptlevel="0"> <munderover> j = 1 m </munderover> ( n % i ) ( m % j ) ( i ! = j ) </mstyle> </mstyle> \displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j = 1}^{m}(n\%i)*(m\%j)(i!=j) i=1nj=1m(n%i)(m%j)(i!=j)
可以先不管i!=j的条件,所以我们可以算 <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> <mstyle displaystyle="true" scriptlevel="0"> <munderover> j = 1 m </munderover> ( n % i ) ( m % j ) </mstyle> </mstyle> \displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j = 1}^{m}(n\%i)*(m\%j) i=1nj=1m(n%i)(m%j)的情况。
我们知道 n % i = n ( n i ) i n\%i = n-(\frac{n}{i})*i n%i=n(in)i,所以 <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> <mstyle displaystyle="true" scriptlevel="0"> <munderover> j = 1 m </munderover> ( n % i ) ( m % j ) </mstyle> </mstyle> \displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j = 1}^{m}(n\%i)*(m\%j) i=1nj=1m(n%i)(m%j) = <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> ( n ( n i ) i ) <munderover> j = 1 m </munderover> ( m ( m j ) j ) </mstyle> \displaystyle\sum_{i=1}^{n}(n-(\frac{n}{i})*i)\sum_{j = 1}^{m}(m-(\frac{m}{j})*j) i=1n(n(in)i)j=1m(m(jm)j)
所以答案就是 <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> ( n ( n i ) i ) <mstyle displaystyle="true" scriptlevel="0"> <munderover> j = 1 m </munderover> ( m ( m j ) j ) </mstyle> </mstyle> \displaystyle\sum_{i=1}^{n}(n-(\frac{n}{i})*i)\displaystyle\sum_{j = 1}^{m}(m-(\frac{m}{j})*j) i=1n(n(in)i)j=1m(m(jm)j)- i = 1 m i n ( n , m ) ( n i ( n i ) ) ( m i ( m i ) ) \sum_{i = 1}^{min(n,m)}{(n-i*(\frac{n}{i}))*(m-i*(\frac{m}{i}))} i=1min(n,m)(ni(in))(mi(im))
前面的式子可以很好的解决,对于后面的的式子 <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 m i n ( n , m ) </munderover> ( n i ( n i ) ) ( m i ( m i ) ) </mstyle> \displaystyle\sum_{i = 1}^{min(n,m)}{(n-i*(\frac{n}{i}))*(m-i*(\frac{m}{i}))} i=1min(n,m)(ni(in))(mi(im))可以处理出 <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 m i n ( n , m ) </munderover> ( n m i m ( n i ) i ( m i ) i 2 ( m i ) ( n i ) ) </mstyle> \displaystyle\sum_{i = 1}^{min(n,m)}{(n*m-i*m*(\frac{n}{i})-i*(\frac{m}{i})-i^2*(\frac{m}{i})*(\frac{n}{i}))} i=1min(n,m)(nmim(in)i(im)i2(im)(in))其中n*m与 i m ( m i ) i*m*(\frac{m}{i}) im(im) i n ( n i ) i*n*(\frac{n}{i}) in(in)可以直接分块每次算出块中的等差数列就行了,剩下的 i 2 ( m i ) ( n i ) i^2*(\frac{m}{i})*(\frac{n}{i}) i2(im)(in)考虑分块的话,应该用 1 2 1^2 12+ 2 2 2^2 22+ 3 3 3^3 33+…+ n n n^n nn = n ( n + 1 ) ( 2 n + 1 ) 6 \frac{n*(n+1)*(2*n+1)}{6} 6n(n+1)(2n+1)。由于要对答案取模,所以要算出6的逆元,乘上逆元就行了。

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long ll;
const int maxn = 1e5+5;
const int mod = 19940417;
int Case = 1;
ll n, m;
ll cal(ll x) {
	ll res = x*x%mod;
	for(ll i = 1, j; i <= x; i = j+1) {
		j = min(x/(x/i), x);
		res = (res-(i+j)*(j-i+1)/2%mod*(x/i)%mod+mod)%mod;
	}
	return res;
}
ll query(ll x) {
	return x*(x+1)%mod*(2*x+1)%mod*3323403%mod;
}
void solve() {
    scanf("%lld%lld", &n, &m);
    ll t = min(n, m), res = cal(n)*cal(m)%mod;
    res = (res-n*m%mod*t%mod);
    while(res<0) res += mod;
    for(ll i = 1, j; i <= t; i=j+1) {
    	j = min(n/(n/i), m/(m/i));
    	ll s1 = (n/i)*(m/i)%mod*(query(j)-query(i-1)+mod)%mod;
    	ll s2 = (j-i+1)*(j+i)/2%mod*(n/i*m%mod+m/i*n%mod);
    	res = (res + (s2-s1)%mod + mod)%mod;
    }
    printf("%lld\n", res);
    return;
}

int main() {
    //ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
    //freopen("/Users/hannibal_lecter/Desktop/code/in.txt", "r", stdin);
    //freopen("/Users/hannibal_lecter/Desktop/code/out.txt","w",stdout);
#endif
    while(Case--) {
        solve();
    }
    return 0;
}