Solution
题意:给你n个物品,n<21,再给你最多装w的箱子,箱子有x个。
第二行给出n个物品的重量,问能不能用x个箱子把这n个物品全部放进去,物品不能够分隔。
暴力DFS,数据范围w,x,以及单个物品重量都达到了1e9的大小,但是看到物品只有21个,并且不能拆分,就知道最多也就安排21个箱子,可以暴力求解。
初始化每个箱子大小都是w,能放就放,新来的物品就额外最多安排一个新的箱子就行了不用安排到x个箱子。
在通过sort对全部的物品降序排序,减少回溯次数。时间来到5MS...
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__)) typedef long long ll; typedef unsigned long long ull; typedef long double ld; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int MOD = 1e9 + 7; const int INF = 0x3f3f3f3f; const int N = 25; int a[N], b[N]; //a是货物,b是对应箱子 int n, x, w; bool dfs(int now) { if (now == n + 1) { return true; } for (int i = 1; i <= min(now, x); ++i) if (b[i] >= a[now]) { b[i] -= a[now]; if (dfs(now + 1)) return true; b[i] += a[now]; } return false; } int main() { int T = read(); while (T--) { n = read(), x = read(), w = read(); for (int i = 1; i <= n; ++i) a[i] = read(); sort(a + 1, a + 1 + n, greater<int>()); //减小递归深度,提早退出 for (int i = 1; i <= n; ++i) //货物不能拆分 b[i] = w; if (dfs(1)) puts("Yes"); else puts("No"); } return 0; }