这里总结一些面试里中间件相关的知识,记录前人们的总结方便查阅,如有不妥请联系本人修改或删除,谢谢。
这里有一些同学整理的资料,感谢cndn的test bird
https://blog.csdn.net/gaoyuan0512/article/details/88586170
理解:
以下摘录自知乎 Gocy,FireJones 两位同学的回答:
1)将具体业务和底层逻辑解耦的组件。大致的效果是:需要利用服务的人(前端写业务的),不需要知道底层逻辑(提供服务的)的具体实现,只要拿着中间件结果来用就好了。举个例子:我开了一家炸鸡店(业务端),然而周边有太多屠鸡场(底层),为了成本我肯定想一个个比价,再综合质量挑选一家屠鸡场合作(适配不同底层逻辑)。由于市场变化,合作一段时间后,或许性价比最高的屠鸡场就不是我最开始选的了,我又要重新和另一家屠鸡场合作,进货方式、交易方式等等全都要重来一套(重新适配)。然而我只想好好做炸鸡,有性价比高的肉送来就行。于是我找到了一个专门整合屠鸡场资源的第三方代理(中间件),跟他谈好价格和质量后(统一接口),从今天开始,我就只需要给代理钱,然后拿肉就行。代理负责保证肉的质量,至于如何根据实际性价比,选择不同的屠鸡场,那就是代理做的事了。
作者:Gocy
2)介于操作系统和应用程序之间的产品,中间件简单解释,你可以理解为面向信息系统交互,集成过程中的通用部分的集合,屏蔽了底层的通讯,交互,连接等复杂又通用化的功能,以产品的形式提供出来,系统在交互时,直接采用中间件进行连接和交互即可,避免了大量的代码开发和人工成本。其实,理论上来讲,中间件所提供的功能通过代码编写都可以实现,只不过开发的周期和需要考虑的问题太多,逐渐的,这些部分,以中间件产品的形式进行了替代。比如常见的消息中间件,即系统之间的通讯与交互的专用通道,类似于邮局,系统只需要把传输的消息交给中间件,由中间件负责传递,并保证传输过程中的各类问题,如网络问题,协议问题,两端的开发接口问题等均由消息中间件屏蔽了,出现了网络故障时,消息中间件会负责缓存消息,以避免信息丢失。相当于你想给美国发一个邮包,只需要把邮包交给邮局,填写地址和收件人,至于运送过程中的一系列问题你都不需要关心了。
作者:FireJones
缓存
为什么要使用缓存
(一)性能
我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。
(二)并发
如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。
优秀的缓存系统Redis
Redis是完全开源免费的,用C语言编写的,遵守BSD协议,是一个高性能的(key/value)分布式内存数据库,基于内存运行并支持持久化的NoSQL数据库,是当前最热门的NoSql数据库之一,也被人们称为数据结构服务器
Redis相比同类的其他产品,具有如下优点:
- Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用
- Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储
- Redis支持数据的备份,即master-slave模式的数据备份
这里可以推荐几本书:
《Redis设计与实现》看完基本就能handle面试题了
《redis源码解析》深入源码,源码之下,了无秘密
以及一些面试题,根据这些面试题再去看书 事半功倍
https://www.cnblogs.com/qinlulu/p/12855443.html
redis为什么这么快
主要是以下三点
纯内存操作
单线程操作,避免了频繁的上下文切换
采用了非阻塞I/O多路复用机制
题外话:我们现在要仔细的说一说I/O多路复用机制,因为这个说法实在是太通俗了,通俗到一般人都不懂是什么意思。博主打一个比方:小曲在S城开了一家快递店,负责同城快送服务。小曲因为资金限制,雇佣了一批快递员,然后小曲发现资金不够了,只够买一辆车送快递。
简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。
需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。
redis的数据类型,以及每种数据类型的使用场景
(一)String
这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。
(二)hash
这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。
(三)list
使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。
(四)set
因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。
另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的****喜好等功能。
(五)sorted set
sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。另外,参照另一篇《分布式之延时任务方案解析》,该文指出了sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。
redis的过期策略以及内存淘汰机制
分析:这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?
回答:
redis采用的是定期删除+惰性删除策略。
为什么不用定时删除策略?
定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.
定期删除+惰性删除是如何工作的呢?
定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。
于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。
采用定期删除+惰性删除就没其他问题了么?
不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。
在redis.conf中有一行配置
maxmemory-policy volatile-lru
该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)
1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐
ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。
渐进式ReHash
渐进式rehash的原因
整个rehash过程并不是一步完成的,而是分多次、渐进式的完成。如果哈希表中保存着数量巨大的键值对时,若一次进行rehash,很有可能会导致服务器宕机。
渐进式rehash的步骤
为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表
维持索引计数器变量rehashidx,并将它的值设置为0,表示rehash开始
每次对字典执行增删改查时,将ht[0]的rehashidx索引上的所有键值对rehash到ht[1],将rehashidx值+1。
当ht[0]的所有键值对都被rehash到ht[1]中,程序将rehashidx的值设置为-1,表示rehash操作完成
注:渐进式rehash的好处在于它采取分为而治的方式,将rehash键值对的计算均摊到每个字典增删改查操作,避免了集中式rehash的庞大计算量。
缓存穿透
概念访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量大时DB会挂掉。
解决方案:
采用布隆过滤器,使用一个足够大的bitmap,用于存储可能访问的key,不存在的key直接被过滤;
访问key未在DB查询到值,也将空值写进缓存,但可以设置较短过期时间。
缓存雪崩
大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。
解决方案
可以给缓存设置过期时间时加上一个随机值时间,使得每个key的过期时间分布开来,不会集中在同一时刻失效;
采用限流算法,限制流量;
采用分布式锁,加锁访问。
二、消息队列
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题
实现高性能,高可用,可伸缩和最终一致性架构
使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ
这里推荐大家学习下一种即可,比如kafka。
https://www.zhihu.com/question/56172498/answer/148006508
消息队列应用场景
以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景
异步处理
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种 1.串行的方式;2.并行方式
(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端
(2)并行方式:将注册信息写入数据库成功后,发送注
假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)
小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?
引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍
应用解耦
场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图
传统模式的缺点:
假如库存系统无法访问,则订单减库存将失败,从而导致订单失败
订单系统与库存系统耦合
如何解决以上问题呢?引入应用消息队列后的方案
订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功
库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作
假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦
流量削锋
流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
可以控制活动的人数
可以缓解短时间内高流量压垮应用
用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面
秒杀业务根据消息队列中的请求信息,再做后续处理
日志处理
日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。
日志采集客户端,负责日志数据采集,定时写受写入Kafka队列
Kafka消息队列,负责日志数据的接收,存储和转发
日志处理应用:订阅并消费kafka队列中的日志数据
以下是新浪kafka日志处理应用案例:转自(http://cloud.51cto.com/art/201507/484338.htm)
(1)Kafka:接收用户日志的消息队列
(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch
(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能
(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因
消息通讯
消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等
分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。
Zookeeper注册中心,提出负载均衡和地址查找服务
日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列
Kafka集群:接收,路由,存储,转发等消息处理
Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据
JMS消息服务
讲消息队列就不得不提JMS 。JMS(JAVA Message Service,java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。
谢邀,刚下飞机就来详解JMS与消息中间件
https://zhuanlan.zhihu.com/p/332735402
在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。
消息模型
在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
P2P的特点
每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
接收者在成功接收消息之后需向队列应答成功
如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。
Pub/sub模式包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
Pub/Sub的特点
每个消息可以有多个消费者
发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息
为了消费消息,订阅者必须保持运行的状态
为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。
如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。
消息消费
在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。
(1)同步
订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;
(2)异步
订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。
防止消息丢失
由于网络问题,我们很难保证生产者发送的消息能100%到达消息队列服务器,也就是说有消息丢失的可能性,因此,生产者就必须具有消息丢失检测和重发机制,也就是我们常说的消息队列的事物机制
不能把可靠性的保证全部交给TCP,TCP只保证了传输层的可靠传输,但是无法保证与应用层的交互是否出错
TCP无法给应用层任何反馈,因此必须在应用层处理差错
同步的事务——停止等待
所谓停止等待协议就是没发送完一组数据后,等待对方确认并且收到确认后,再发送下一组数据。
同步的事务——连续ARQ
类似于TCP的滑动窗口模型
异步的事务——回调机制
生产者在发送消息的时候,注册一个回调函数,这样生产者便不用停下来等待确认了,而是可以一直持续发送消息,当消息到达消息队列服务器的时候,服务器便会调用生产者注册的回调函数,告知生产者消息发送成功了还是失败了,进而做进一步的处理,从而提高了并发量。
消息的幂等处理
由于网络原因,生产者可能会重复发送消息,因此消费者方必须做消息的幂等处理,常用的解决方案有:
查询操作:查询一次和查询多次,在数据不变的情况下,查询结果是一样的。select是天然的幂等操作;
删除操作:删除操作也是幂等的,删除一次和多次删除都是把数据删除。(注意可能返回结果不一样,删除的数据不存在,返回0,删除的数据多条,返回结果多个) ;
唯一索引,防止新增脏数据。比如:支付宝的资金账户,支付宝也有用户账户,每个用户只能有一个资金账户,怎么防止给用户创建资金账户多个,那么给资金账户表中的用户ID加唯一索引,所以一个用户新增成功一个资金账户记录。要点:唯一索引或唯一组合索引来防止新增数据存在脏数据(当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可);
token机制,防止页面重复提交。业务要求: 页面的数据只能被点击提交一次;发生原因: 由于重复点击或者网络重发,或者nginx重发等情况会导致数据被重复提交;解决办法: 集群环境采用token加redis(redis单线程的,处理需要排队);单JVM环境:采用token加redis或token加jvm内存。处理流程:1. 数据提交前要向服务的申请token,token放到redis或jvm内存,token有效时间;2. 提交后后台校验token,同时删除token,生成新的token返回。token特点:要申请,一次有效性,可以限流。注意:redis要用删除操作来判断token,删除成功代表token校验通过,如果用select+delete来校验token,存在并发问题,不建议使用;
悲观锁——获取数据的时候加锁获取。select * from table_xxx where id='xxx' for update; 注意:id字段一定是主键或者唯一索引,不然是锁表,会死人的悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用;
乐观锁——乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。乐观锁的实现方式多种多样可以通过version或者其他状态条件:1. 通过版本号实现update table_xxx set name=#name#,version=version+1 where version=#version#如下图(来自网上);2. 通过条件限制 update table_xxx set avai_amount=avai_amount-#subAmount# where avai_amount-#subAmount# >= 0要求:quality-#subQuality# >= ,这个情景适合不用版本号,只更新是做数据安全校验,适合库存模型,扣份额和回滚份额,性能更高;
update table_xxx set name=#name#,version=version+1 where id=#id# and version=#version#;
update table_xxx set avai_amount=avai_amount-#subAmount# where id=#id# and avai_amount-#subAmount# >= 0;
7.分布式锁——还是拿插入数据的例子,如果是分布是系统,构建全局唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统(redis或zookeeper),在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。要点:某个长流程处理过程要求不能并发执行,可以在流程执行之前根据某个标志(用户ID+后缀等)获取分布式锁,其他流程执行时获取锁就会失败,也就是同一时间该流程只能有一个能执行成功,执行完成后,释放分布式锁(分布式锁要第三方系统提供);
8.select + insert——并发不高的后台系统,或者一些任务JOB,为了支持幂等,支持重复执行,简单的处理方法是,先查询下一些关键数据,判断是否已经执行过,在进行业务处理,就可以了。注意:核心高并发流程不要用这种方法;
消息的按序处理
同上,消息的按序也不能完全依靠于TCP
在说到消息中间件的时候,我们通常都会谈到一个特性:消息的顺序消费问题。这个问题看起来很简单:Producer发送消息1, 2, 3。。。 Consumer按1, 2, 3。。。顺序消费。
但实际情况却是:无论RocketMQ,还是Kafka,缺省都不保证消息的严格有序消费!
这个特性看起来很简单,但为什么缺省他们都不保证呢?
“严格的顺序消费”有多么困难
下面就从3个方面来分析一下,对于一个消息中间件来说,”严格的顺序消费”有多么困难,或者说不可能。
发送端
发送端不能异步发送,异步发送在发送失败的情况下,就没办法保证消息顺序。
比如你连续发了1,2,3。 过了一会,返回结果1失败,2, 3成功。你把1再重新发送1遍,这个时候顺序就乱掉了。
存储端
对于存储端,要保证消息顺序,会有以下几个问题:
(1)消息不能分区。也就是1个topic,只能有1个队列。在Kafka中,它叫做partition;在RocketMQ中,它叫做queue。 如果你有多个队列,那同1个topic的消息,会分散到多个分区里面,自然不能保证顺序。
(2)即使只有1个队列的情况下,会有第2个问题。该机器挂了之后,能否切换到其他机器?也就是高可用问题。
比如你当前的机器挂了,上面还有消息没有消费完。此时切换到其他机器,可用性保证了。但消息顺序就乱掉了。
要想保证,一方面要同步复制,不能异步复制;另1方面得保证,切机器之前,挂掉的机器上面,所有消息必须消费完了,不能有残留。很明显,这个很难!!!
接收端
对于接收端,不能并行消费,也即不能开多线程或者多个客户端消费同1个队列。
总结
从上面的分析可以看出,要保证消息的严格有序,有多么困难!
发送端和接收端的问题,还好解决一点,限制异步发送,限制并行消费。但对于存储端,机器挂了之后,切换的问题,就很难解决了。
你切换了,可能消息就会乱;你不切换,那就暂时不可用。这2者之间,就需要权衡了。
业务需要全局有序吗?
通过上面分析可以看出,要保证一个topic内部,消息严格的有序,是很困难的,或者说条件是很苛刻的。
那怎么办呢?我们一定要使出所有力气、用尽所有办法,来保证消息的严格有序吗?
这里就需要从另外一个角度去考虑这个问题:业务角度。正如在下面这篇博客中所说的:
http://www.jianshu.com/p/453c6e7ff81c
实际情况中:
(1)不关注顺序的业务大量存在;
(2) 队列无序不代表消息无序。