题目描述
判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。
- 数字 1-9 在每一行只能出现一次。
- 数字 1-9 在每一列只能出现一次。
- 数字 1-9 在每一个以粗实线分隔的 3x3
宫内只能出现一次。
上图是一个部分填充的有效的数独。
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。
示例 1:
输入:
[
[“5”,“3”,".",".",“7”,".",".",".","."],
[“6”,".",".",“1”,“9”,“5”,".",".","."],
[".",“9”,“8”,".",".",".",".",“6”,"."],
[“8”,".",".",".",“6”,".",".",".",“3”],
[“4”,".",".",“8”,".",“3”,".",".",“1”],
[“7”,".",".",".",“2”,".",".",".",“6”],
[".",“6”,".",".",".",".",“2”,“8”,"."],
[".",".",".",“4”,“1”,“9”,".",".",“5”],
[".",".",".",".",“8”,".",".",“7”,“9”]
]
输出: true
示例 2:
输入:
[
[“8”,“3”,".",".",“7”,".",".",".","."],
[“6”,".",".",“1”,“9”,“5”,".",".","."],
[".",“9”,“8”,".",".",".",".",“6”,"."],
[“8”,".",".",".",“6”,".",".",".",“3”],
[“4”,".",".",“8”,".",“3”,".",".",“1”],
[“7”,".",".",".",“2”,".",".",".",“6”],
[".",“6”,".",".",".",".",“2”,“8”,"."],
[".",".",".",“4”,“1”,“9”,".",".",“5”],
[".",".",".",".",“8”,".",".",“7”,“9”]
]
输出: false
解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。
但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
说明:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 给定数独序列只包含数字 1-9和字符 ‘.’ 。
- 给定数独永远是 9x9 形式的。
解题思路
用三个数组分别记录横向、纵向和3x3 block中出现过的数字。
三个数组初始化为0,若出现了某个位置的数字,则该位置设置为1.
rows = [[0] * 9 for p in range(9)]
cols = [[0] * 9 for p in range(9)]
blocks = [[0] * 9 for p in range(9)]
例如:
如下图所示:
1、红色框框选的数字为9在第三行,则把横向的第三行的第9位设置为1;
rows[2][8] = 1
2、红色框框选的数字为9在第二列,则把纵向的第二列的第9位设置为1;
cols[1][8] = 1
3、红色框框选的数字为9在第一个3x3 block,则把第一个3x3 bloc的第9位设置为1;
blocks[0][8] = 1
其中,根据board中数字所在行列计算该数字所在的rows、cols和blocks中的位置如下所示:
for i in range(9):
for j in range(9):
nums = int(board[i][j]) - 1 # 所在rows、cols和blocks的列号
if rows[i][nums] == 0: # i 即为所在rows的行号
rows[i][nums] = 1
if cols[j][nums] == 0: # j即为所在cols的行号
cols[j][nums] = 1
block_num = (i // 3) * 3 + j // 3 # block_num 即为所在blocks的行号
if blocks[block_num][nums] == 0:
blocks[block_num][nums] = 1
完整代码
class Solution:
def isValidSudoku(self, board: List[List[str]]) -> bool:
rows = [[0] * 9 for p in range(9)]
cols = [[0] * 9 for p in range(9)]
blocks = [[0] * 9 for p in range(9)]
for i in range(9):
for j in range(9):
if board[i][j] != '.':
nums = int(board[i][j]) - 1
if rows[i][nums] == 0:
rows[i][nums] = 1
else:
return False
if cols[j][nums] == 0:
cols[j][nums] = 1
else:
return False
block_num = (i // 3) * 3 + j // 3
if blocks[block_num][nums] == 0:
blocks[block_num][nums] = 1
return False
return True