思路
博弈论模板级别的题.
算出每个节点的函数值(所有出点的
函数值求mex,没有出边的
函数值为
),然后将所有起点的
异或起来就是整个游戏的
函数值.
若函数值大于
,就是win,否则就lose.
复杂度大概为.
代码
#include<bits/stdc++.h> using namespace std; #define i64 long long #define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i ) #define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i ) #define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] ) template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; } template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; } #define getchar() ( p1 == p2 && ( p1 = bf, p2 = bf + fread( bf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1++ ) char bf[1 << 21], *p1(bf), *p2(bf); template<typename T> inline void read( T &x ){ char t(getchar()), flg(0); x = 0; for ( ; !isdigit(t); t = getchar() ) flg = t == '-'; for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 ); flg ? x = -x : x; } clock_t t_bg, t_ed; const int MAXN = 2e3 + 5, MAXM = 6e3 + 5; int N, M, K; int hd[MAXN], nxt[MAXM], to[MAXM], tot; int a[MAXN], d[MAXN]; bool vis[MAXN], g[MAXN]; inline void addedge( int x, int y ){ nxt[++tot] = hd[x], hd[x] = tot, to[tot] = y; } void DFS( int u ){ vis[u] = 1; if ( !hd[u] ) return a[u] = 0, void(); go( i, hd[u] ) if ( !vis[v] ) DFS(v); go( i, hd[u] ) d[a[v]] = u; fp( i, 0, N ) if ( d[i] != u ){ a[u] = i; break; } } signed main(){ t_bg = clock(); read(N), read(M), read(K); int x, y; fp( i, 1, M ) read(x), read(y), addedge( x, y ), g[y] = 1; fp( i, 1, N ) if ( !g[i] ) DFS(i); int ans(0); while( K-- ) read(x), ans ^= a[x]; printf( ans ? "win\n" : "lose\n" ); t_ed = clock(); fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC ); return 0; }