Java编程实现高斯模糊和图像的空间卷积详解
高斯模糊
高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像杂讯以及降低细节层次。这种模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像,这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果。 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊。图像与圆形方框模糊做卷积将会生成更加精确的焦外成像效果。由于高斯函数的傅立叶变换是另外一个高斯函数,所以高斯模糊对于图像来说就是一个低通滤波器。
高斯模糊运用了高斯的正态分布的密度函数,计算图像中每个像素的变换。
根据一维高斯函数,可以推导得到二维高斯函数:
其中r是模糊半径,r^2 = x^2 + y^2,σ是正态分布的标准偏差。在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果。
其实,在iOS上实现高斯模糊是件很容易的事儿。早在iOS 5.0就有了Core Image的API,而且在CoreImage.framework库中,提供了大量的滤镜实现。
+(UIImage *)coreBlurImage:(UIImage *)image withBlurNumber:(CGFloat)blur
{
CIContext *context = [CIContext contextWithOptions:nil];
CIImage *inputImage= [CIImage imageWithCGImage:image.CGImage];
//设置filter
CIFilter *filter = [CIFilter filterWithName:@"CIGaussianBlur"];
[filter setValue:inputImage forKey:kCIInputImageKey]; [filter setValue:@(blur) forKey: @"inputRadius"];
//模糊图片
CIImage *result=[filter valueForKey:kCIOutputImageKey];
CGImageRef outImage=[context createCGImage:result fromRect:[result extent]];
UIImage *blurImage=[UIImage imageWithCGImage:outImage];
CGImageRelease(outImage);
return blurImage;
} 在Android上实现高斯模糊也可以使用原生的API—–RenderScript,不过需要Android的API是17以上,也就是Android 4.2版本。
/**
* 使用RenderScript实现高斯模糊的算法
* @param bitmap
* @return
*/
public Bitmap blur(Bitmap bitmap){
//Let's create an empty bitmap with the same size of the bitmap we want to blur
Bitmap outBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Bitmap.Config.ARGB_8888);
//Instantiate a new Renderscript
RenderScript rs = RenderScript.create(getApplicationContext());
//Create an Intrinsic Blur Script using the Renderscript
ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs));
//Create the Allocations (in/out) with the Renderscript and the in/out bitmaps
Allocation allIn = Allocation.createFromBitmap(rs, bitmap);
Allocation allOut = Allocation.createFromBitmap(rs, outBitmap);
//Set the radius of the blur: 0 < radius <= 25
blurScript.setRadius(20.0f);
//Perform the Renderscript
blurScript.setInput(allIn);
blurScript.forEach(allOut);
//Copy the final bitmap created by the out Allocation to the outBitmap
allOut.copyTo(outBitmap);
//recycle the original bitmap
bitmap.recycle();
//After finishing everything, we destroy the Renderscript.
rs.destroy();
return outBitmap;
} 我们开发的图像框架cv4j也提供了一个滤镜来实现高斯模糊。
GaussianBlurFilter filter = new GaussianBlurFilter(); filter.setSigma(10); RxImageData.bitmap(bitmap).addFilter(filter).into(image2);
可以看出,cv4j实现的高斯模糊跟RenderScript实现的效果一致。
其中,GaussianBlurFilter的代码如下:
public class GaussianBlurFilter implements CommonFilter {
private float[] kernel;
private double sigma = 2;
ExecutorService mExecutor;
CompletionService<Void> service;
public GaussianBlurFilter() {
kernel = new float[0];
}
public void setSigma(double a) {
this.sigma = a;
}
@Override
public ImageProcessor filter(final ImageProcessor src){
final int width = src.getWidth();
final int height = src.getHeight();
final int size = width*height;
int dims = src.getChannels();
makeGaussianKernel(sigma, 0.002, (int)Math.min(width, height));
mExecutor = TaskUtils.newFixedThreadPool("cv4j",dims);
service = new ExecutorCompletionService<>(mExecutor);
// save result
for (int i=0; i<dims; i++) {
final int temp = i;
service.submit(new Callable<Void>() {
public Void call() throws Exception {
byte[] inPixels = src.tobyte(temp);
byte[] temp = new byte[size];
blur(inPixels, temp, width, height);
// H Gaussian
blur(temp, inPixels, height, width);
// V Gaussain
return null;
}
}
);
}
for (int i = 0; i < dims; i++) {
try {
service.take();
}
catch (InterruptedException e) {
e.printStackTrace();
}
}
mExecutor.shutdown();
return src;
}
/**
* <p> here is 1D Gaussian , </p>
*
* @param inPixels
* @param outPixels
* @param width
* @param height
*/
private void blur(byte[] inPixels, byte[] outPixels, int width, int height)
{
int subCol = 0;
int index = 0, index2 = 0;
float sum = 0;
int k = kernel.length-1;
for (int row=0; row<height; row++) {
int c = 0;
index = row;
for (int col=0; col<width; col++) {
sum = 0;
for (int m = -k; m< kernel.length; m++) {
subCol = col + m;
if(subCol < 0 || subCol >= width) {
subCol = 0;
}
index2 = row * width + subCol;
c = inPixels[index2] & 0xff;
sum += c * kernel[Math.abs(m)];
}
outPixels[index] = (byte)Tools.clamp(sum);
index += height;
}
}
}
public void makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) {
int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1;
if (maxRadius < 50) maxRadius = 50;
// too small maxRadius would result in inaccurate sum.
if (kRadius > maxRadius) kRadius = maxRadius;
kernel = new float[kRadius];
for (int i=0; i<kRadius; i++) // Gaussian function
kernel[i] = (float)(Math.exp(-0.5*i*i/sigma/sigma));
double sum;
// sum over all kernel elements for normalization
if (kRadius < maxRadius) {
sum = kernel[0];
for (int i=1; i<kRadius; i++)
sum += 2*kernel[i];
} else
sum = sigma * Math.sqrt(2*Math.PI);
for (int i=0; i<kRadius; i++) {
double v = (kernel[i]/sum);
kernel[i] = (float)v;
}
return;
}
} 空间卷积
二维卷积在图像处理中会经常遇到,图像处理中用到的大多是二维卷积的离散形式。
以下是cv4j实现的各种卷积效果。
cv4j 目前支持如下的空间卷积滤镜
| filter | 名称 | 作用 |
|---|---|---|
| ConvolutionHVFilter | 卷积 | 模糊或者降噪 |
| MinMaxFilter | 最大最小值滤波 | 去噪声 |
| SAPNoiseFilter | 椒盐噪声 | 增加噪声 |
| SharpFilter | 锐化 | 增强 |
| MedimaFilter | 中值滤波 | 去噪声 |
| LaplasFilter | 拉普拉斯 | 提取边缘 |
| FindEdgeFilter | 寻找边缘 | 梯度提取 |
| SobelFilter | 梯度 | 获取x、y方向的梯度提取 |
| VarianceFilter | 方差滤波 | 高通滤波 |
| MaerOperatorFilter | 马尔操作 | 高通滤波 |
| USMFilter | USM | 增强 |
cv4j 是gloomyfish和我一起开发的图像处理库,目前还处于早期的版本。
目前已经实现的功能:
这周,我们对 cv4j 做了较大的调整,对整体架构进行了优化。还加上了空间卷积功能(图片增强、锐化、模糊等等)。接下来,我们会做二值图像的分析(腐蚀、膨胀、开闭操作、轮廓提取等等)
总结
以上就是本文关于Java编程实现高斯模糊和图像的空间卷积详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
70行Java代码实现深度神经网络算法分享
Java语言基于无向有权图实现克鲁斯卡尔算法代码示例
java算法实现红黑树完整代码示例
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
一行java代码实现高斯模糊效果
本文实例为大家分享了本地图片或者网络图片高斯模糊效果(毛玻璃效果),具体内容如下
首先看效果图
1.本地图片高斯模糊
2.网络图片高斯模糊
github网址:https://github.com/qiushi123/BlurImageQcl
下面是使用步骤
一、实现本地图片或者网络图片的毛玻璃效果特别方便,只需要把下面的FastBlurUtil类复制到你的项目中就行
package com.testdemo.blur_image_lib10;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URL;
/**
* Created by qcl on 14/7/15.
*/
public class FastBlurUtil {
/**
* 根据imagepath获取bitmap
*/
/**
* 得到本地或者网络上的bitmap url - 网络或者本地图片的绝对路径,比如:
* <p>
* A.网络路径: url="http://blog.foreverlove.us/girl2.png" ;
* <p>
* B.本地路径:url="file://mnt/sdcard/photo/image.png";
* <p>
* C.支持的图片格式 ,png, jpg,bmp,gif等等
*
* @param url
* @return
*/
public static int IO_BUFFER_SIZE = 2 * 1024;
public static Bitmap GetUrlBitmap(String url, int scaleRatio) {
int blurRadius = 8;//通常设置为8就行。
if (scaleRatio <= 0) {
scaleRatio = 10;
}
Bitmap originBitmap = null;
InputStream in = null;
BufferedOutputStream out = null;
try {
in = new BufferedInputStream(new URL(url).openStream(), IO_BUFFER_SIZE);
final ByteArrayOutputStream dataStream = new ByteArrayOutputStream();
out = new BufferedOutputStream(dataStream, IO_BUFFER_SIZE);
copy(in, out);
out.flush();
byte[] data = dataStream.toByteArray();
originBitmap = BitmapFactory.decodeByteArray(data, 0, data.length);
Bitmap scaledBitmap = Bitmap.createScaledBitmap(originBitmap,
originBitmap.getWidth() / scaleRatio,
originBitmap.getHeight() / scaleRatio,
false);
Bitmap blurBitmap = doBlur(scaledBitmap, blurRadius, true);
return blurBitmap;
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
private static void copy(InputStream in, OutputStream out)
throws IOException {
byte[] b = new byte[IO_BUFFER_SIZE];
int read;
while ((read = in.read(b)) != -1) {
out.write(b, 0, read);
}
}
// 把本地图片毛玻璃化
public static Bitmap toBlur(Bitmap originBitmap, int scaleRatio) {
// int scaleRatio = 10;
// 增大scaleRatio缩放比,使用一样更小的bitmap去虚化可以到更好的得模糊效果,而且有利于占用内存的减小;
int blurRadius = 8;//通常设置为8就行。
//增大blurRadius,可以得到更高程度的虚化,不过会导致CPU更加intensive
/* 其中前三个参数很明显,其中宽高我们可以选择为原图尺寸的1/10;
第四个filter是指缩放的效果,filter为true则会得到一个边缘平滑的bitmap,
反之,则会得到边缘锯齿、pixelrelated的bitmap。
这里我们要对缩放的图片进行虚化,所以无所谓边缘效果,filter=false。*/
if (scaleRatio <= 0) {
scaleRatio = 10;
}
Bitmap scaledBitmap = Bitmap.createScaledBitmap(originBitmap,
originBitmap.getWidth() / scaleRatio,
originBitmap.getHeight() / scaleRatio,
false);
Bitmap blurBitmap = doBlur(scaledBitmap, blurRadius, true);
return blurBitmap;
}
public static Bitmap doBlur(Bitmap sentBitmap, int radius, boolean canReuseInBitmap) {
Bitmap bitmap;
if (canReuseInBitmap) {
bitmap = sentBitmap;
} else {
bitmap = sentBitmap.copy(sentBitmap.getConfig(), true);
}
if (radius < 1) {
return (null);
}
int w = bitmap.getWidth();
int h = bitmap.getHeight();
int[] pix = new int[w * h];
bitmap.getPixels(pix, 0, w, 0, 0, w, h);
int wm = w - 1;
int hm = h - 1;
int wh = w * h;
int div = radius + radius + 1;
int r[] = new int[wh];
int g[] = new int[wh];
int b[] = new int[wh];
int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
int vmin[] = new int[Math.max(w, h)];
int divsum = (div + 1) >> 1;
divsum *= divsum;
int dv[] = new int[256 * divsum];
for (i = 0; i < 256 * divsum; i++) {
dv[i] = (i / divsum);
}
yw = yi = 0;
int[][] stack = new int[div][3];
int stackpointer;
int stackstart;
int[] sir;
int rbs;
int r1 = radius + 1;
int routsum, goutsum, boutsum;
int rinsum, ginsum, binsum;
for (y = 0; y < h; y++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
for (i = -radius; i <= radius; i++) {
p = pix[yi + Math.min(wm, Math.max(i, 0))];
sir = stack[i + radius];
sir[0] = (p & 0xff0000) >> 16;
sir[1] = (p & 0x00ff00) >> 8;
sir[2] = (p & 0x0000ff);
rbs = r1 - Math.abs(i);
rsum += sir[0] * rbs;
gsum += sir[1] * rbs;
bsum += sir[2] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
}
stackpointer = radius;
for (x = 0; x < w; x++) {
r[yi] = dv[rsum];
g[yi] = dv[gsum];
b[yi] = dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
if (y == 0) {
vmin[x] = Math.min(x + radius + 1, wm);
}
p = pix[yw + vmin[x]];
sir[0] = (p & 0xff0000) >> 16;
sir[1] = (p & 0x00ff00) >> 8;
sir[2] = (p & 0x0000ff);
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack[(stackpointer) % div];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
yi++;
}
yw += w;
}
for (x = 0; x < w; x++) {
rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
yp = -radius * w;
for (i = -radius; i <= radius; i++) {
yi = Math.max(0, yp) + x;
sir = stack[i + radius];
sir[0] = r[yi];
sir[1] = g[yi];
sir[2] = b[yi];
rbs = r1 - Math.abs(i);
rsum += r[yi] * rbs;
gsum += g[yi] * rbs;
bsum += b[yi] * rbs;
if (i > 0) {
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
} else {
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
}
if (i < hm) {
yp += w;
}
}
yi = x;
stackpointer = radius;
for (y = 0; y < h; y++) {
// Preserve alpha channel: ( 0xff000000 & pix[yi] )
pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum];
rsum -= routsum;
gsum -= goutsum;
bsum -= boutsum;
stackstart = stackpointer - radius + div;
sir = stack[stackstart % div];
routsum -= sir[0];
goutsum -= sir[1];
boutsum -= sir[2];
if (x == 0) {
vmin[y] = Math.min(y + r1, hm) * w;
}
p = x + vmin[y];
sir[0] = r[p];
sir[1] = g[p];
sir[2] = b[p];
rinsum += sir[0];
ginsum += sir[1];
binsum += sir[2];
rsum += rinsum;
gsum += ginsum;
bsum += binsum;
stackpointer = (stackpointer + 1) % div;
sir = stack[stackpointer];
routsum += sir[0];
goutsum += sir[1];
boutsum += sir[2];
rinsum -= sir[0];
ginsum -= sir[1];
binsum -= sir[2];
yi += w;
}
}
bitmap.setPixels(pix, 0, w, 0, 0, w, h);
return (bitmap);
}
}
二、使用实例
package com.testdemo;
import android.app.Activity;
import android.content.res.Resources;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.widget.EditText;
import android.widget.ImageView;
import com.testdemo.blur_image_lib10.FastBlurUtil;
public class MainActivity10_BlurImage extends Activity {
ImageView image;
EditText edit;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main10_blur_image);
image = (ImageView) findViewById(R.id.image);
edit = (EditText) findViewById(R.id.edit);
findViewById(R.id.button2).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
String pattern = edit.getText().toString();
int scaleRatio = 0;
if (TextUtils.isEmpty(pattern)) {
scaleRatio = 0;
} else if (scaleRatio < 0) {
scaleRatio = 10;
} else {
scaleRatio = Integer.parseInt(pattern);
}
// 获取需要被模糊的原图bitmap
Resources res = getResources();
Bitmap scaledBitmap = BitmapFactory.decodeResource(res, R.drawable.filter);
// scaledBitmap为目标图像,10是缩放的倍数(越大模糊效果越高)
Bitmap blurBitmap = FastBlurUtil.toBlur(scaledBitmap, scaleRatio);
image.setScaleType(ImageView.ScaleType.CENTER_CROP);
image.setImageBitmap(blurBitmap);
}
});
findViewById(R.id.button).setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
//url为网络图片的url,10 是缩放的倍数(越大模糊效果越高)
final String pattern = edit.getText().toString();
final String url =
// "http://imgs.duwu.me/duwu/doc/cover/201601/18/173040803962.jpg";
"http://b.hiphotos.baidu.com/album/pic/item/caef76094b36acafe72d0e667cd98d1000e99c5f.jpg?psign=e72d0e667cd98d1001e93901213fb80e7aec54e737d1b867";
new Thread(new Runnable() {
@Override
public void run() {
int scaleRatio = 0;
if (TextUtils.isEmpty(pattern)) {
scaleRatio = 0;
} else if (scaleRatio < 0) {
scaleRatio = 10;
} else {
scaleRatio = Integer.parseInt(pattern);
}
// 下面的这个方法必须在子线程中执行
final Bitmap blurBitmap2 = FastBlurUtil.GetUrlBitmap(url, scaleRatio);
// 刷新ui必须在主线程中执行
APP.runOnUIThread(new Runnable() {//这个是我自己封装的在主线程中刷新ui的方法。
@Override
public void run() {
image.setScaleType(ImageView.ScaleType.CENTER_CROP);
image.setImageBitmap(blurBitmap2);
}
});
}
}).start();
}
});
}
}
下面是上面的布局文件
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical"> <ImageView android:id="@+id/image2" android:layout_width="match_parent" android:layout_height="220dp" android:background="@drawable/filter"/> <LinearLayout android:layout_width="match_parent" android:layout_height="wrap_content" android:orientation="horizontal"> <EditText android:id="@+id/edit" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginTop="15dp" android:hint="输入模糊度" /> <Button android:id="@+id/button2" android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="转化毛玻璃"/> <Button android:id="@+id/button" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginLeft="4dp" android:text="转化网络图片毛玻璃"/> </LinearLayout> <ImageView android:id="@+id/image" android:layout_width="match_parent" android:layout_height="220dp" android:layout_below="@+id/image2" /> </LinearLayout>
三、注意事项
1.一定不要忘记intent权限
2.加载网络图片时一定要在子线程中执行。
github网址:https://github.com/qiushi123/BlurImageQcl
以上就是本文的全部内容,希望对大家的学习有所帮助,



京公网安备 11010502036488号