[Usaco2015 Jan]Grass Cownoisseur
题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)
数据范围:$1\le n, m\le 10^5$。
题解:
先$tarjan$缩强连通分量,因为每一个$SCC$只要能到一个点就能到整个$SCC$。
接下来我们发现,我们操作的边的两个端点会满足如下性质:
这条有向边的起点可以到$1$号点所在$SCC$。
这条有向边的重点可以被$1$号点所在$SCC$到达。
故此,我们再缩完点之后,先对原图弄一遍拓扑序$DP$,求出$1$号点所在$SCC$到每个点的最长路。
再建反边重新跑拓扑序$DP$,求出每个点到$1$号点所在$SCC$的最长路。
暴力枚举边更新即可。
代码:
#include <bits/stdc++.h>
#define N 100010
using namespace std;
int dep[N], low[N], st[N], top, cnt, blg[N], sz[N], f1[N], f2[N], d1[N], d2[N];
int Number;
bool ins[N];
struct Node {
int x, y;
}e[N];
struct Edge {
int head[N], to[N << 1], nxt[N << 1], tot;
inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
}
}G1,G2,G3;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
void tarjan(int p) {
st[ ++ top] = p;
ins[p] = true;
low[p] = dep[p] = ++cnt;
for (int i = G1.head[p]; i; i = G1.nxt[i]) {
if (!dep[G1.to[i]])
tarjan(G1.to[i]), low[p] = min(low[p], low[G1.to[i]]);
else if (ins[G1.to[i]])
low[p] = min(low[p], dep[G1.to[i]]);
}
if (dep[p] == low[p]) {
int t;
Number ++ ;
do {
t = st[top -- ];
ins[t] = false;
blg[t] = Number;
sz[Number] ++ ;
} while(t != p);
}
}
queue<int> q;
void dp1() {
while (!q.empty()) {
q.pop();
}
memset(f1, 0xef, sizeof f1);
for (int i = 1; i <= Number; i ++ ) {
if (!d1[i]) {
q.push(i);
}
}
f1[blg[1]] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
f1[x] += sz[x];
for (int i = G2.head[x]; i; i = G2.nxt[i]) {
f1[G2.to[i]] = max(f1[G2.to[i]], f1[x]);
d1[G2.to[i]] -- ;
if (!d1[G2.to[i]]) {
q.push(G2.to[i]);
}
}
}
}
void dp2() {
while (!q.empty()) {
q.pop();
}
for (int i = 1; i <= Number; i ++ ) {
if (!d2[i]) {
q.push(i);
}
}
memset(f2, 0xef, sizeof f2);
f2[blg[1]] = 0;
while (!q.empty()) {
int x = q.front();
q.pop();
f2[x] += sz[x];
for (int i = G3.head[x]; i; i = G3.nxt[i]) {
f2[G3.to[i]] = max(f2[G3.to[i]], f2[x]);
d2[G3.to[i]] -- ;
if (!d2[G3.to[i]]) {
q.push(G3.to[i]);
}
}
}
}
int main() {
int n = rd(), m = rd();
if (!n)
puts("1"), exit(0);
for (int i = 1; i <= m; i ++ ) {
e[i].x = rd(), e[i].y = rd();
G1.add(e[i].x, e[i].y);
}
for (int i = 1; i <= n; i ++ ) {
if (!dep[i]) {
tarjan(i);
}
}
// for (int i = 1; i <= n; i ++ ) {
// printf("%d ",blg[i]);
// }
// puts("");
for (int i = 1; i <= m; i ++ ) {
e[i].x = blg[e[i].x];
e[i].y = blg[e[i].y];
if (e[i].x != e[i].y) {
// printf("%d %d\n", e[i].x, e[i].y);
G2.add(e[i].x, e[i].y);
d1[e[i].y] ++ ;
G3.add(e[i].y, e[i].x);
d2[e[i].x] ++ ;
}
}
dp1();
dp2();
// for (int i = 1; i <= Number; i ++ ) {
// printf("%d %d\n", f1[i], f2[i]);
// }
int ans = sz[blg[1]];
for (int i = 1; i <= m; i ++ ) {
if (e[i].x != e[i].y) {
ans = max(ans, f1[e[i].y] + f2[e[i].x] - sz[blg[1]]);
}
}
cout << ans << endl ;
return 0;
}
小结:比较好想的一道题,需要注意的是两边拓扑序$dp$需要清队列。

京公网安备 11010502036488号