import numpy as np def linear_regression_gradient_descent(X, y, alpha, iterations): # 补全代码 m, n = X.shape theta = np.zeros((n,1)) # 包括截距项 theta_0 for _ in range(iterations): predictions = X.dot(theta) errors = predictions - y gradient = X.T.dot(errors) / m theta -= alpha * gradient return np.round(theta.flatten(), 4) # 主程序 if __name__ == "__main__": # 输入矩阵和向量 matrix_inputx = input() array_y = input() alpha = input() iterations = input() # 处理输入 import ast matrix = np.array(ast.literal_eval(matrix_inputx)) y = np.array(ast.literal_eval(array_y)).reshape(-1,1) alpha = float(alpha) iterations = int(iterations) # 调用函数计算逆矩阵 output = linear_regression_gradient_descent(matrix,y,alpha,iterations) # 输出结果 print(output)