SCU - 4441 环形dp+树状数组优化

Necklace

frog has nn gems arranged in a cycle, whose beautifulness are a1,a2,…,ana1,a2,…,an. She would like to remove some gems to make them into a beautiful necklace without changing their relative order.

Note that a beautiful necklace can be divided into 3 consecutive parts X,y,Z where

  1. XX consists of gems with non-decreasing beautifulness,
  2. yy is the only perfect gem. (A perfect gem is a gem whose beautifulness equals to 1000010000)
  3. ZZ consists of gems with non-increasing beautifulness.

Find out the maximum total beautifulness of the remaining gems.

Input

The input consists of multiple tests. For each test:

The first line contains 1 integer n ( 1 n 1 0 5 1≤n≤10^5 1n105). The second line contains nnintegers a1,a2,…,an a1,a2,…,an. ( 0 a i 1 0 4 , 1 n u m b e r <mtext>   </mtext> o f <mtext>   </mtext> p e r f e c t g e m s 10 0≤ai≤10^4,1≤number~of~perfect gems≤10 0ai104,1number of perfectgems10).

Output

For each test, write 11 integer which denotes the maximum total remaining beautifulness.

Sample Input

    6
    10000 3 2 4 2 3
    2
    10000 10000

Sample Output

    10010
    10000

题意:

N个数构成一个环,现在可以删除一些数,使得这个环可以分成连续的三部分:

X部分:所有数不降

Y部分:仅含一个值为10000的数

Z部分:所有数不增

思路:

​ 大体思路就是枚举每个10000的点,再枚举中间的每个端点,求10000右边的非递增序列最大和,求10000左边的非递减序列最大和。但是我们可以把这个数组复制成原来的两倍,那么 i d id id 的复制品 i d + n id+n id+n 之间的就是环的其他部分,我们可以用树状数组求每个端点从左边开始的非递增序列最大和 以及 每个端点从右边开始向左边的非递增序列最大和,时间复杂度为O(nllogn)。最后O(n)枚举分裂点求最大即可

AC代码:

#include<bits/stdc++.h>
#define mset(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int MAX=10000;
int vc[20],vt;//存储10000的下标
int fa[200110],fb[200110],VA[200100];
int bt[10010],n;
int lowbit(int k)
{
    return k&-k;
}
void modify(int k,int val)
{
    while(k<=MAX)
    {
        bt[k]=max(bt[k],val);
        k+=lowbit(k);
    }
}
int getmax(int k)
{
    int ans=0;
    while(k>0)
    {
        ans=max(ans,bt[k]);
        k-=lowbit(k);
    }
    return ans;
}
int solve(int id)//id作为项链中心 返回最大值
{
    fa[id]=0;
    mset(bt,0);
    for(int i=id+1; i<=id+n; ++i)
    {
        if(VA[i]==10000)
        {
            fa[i]=fa[i-1];
            continue;
        }
        int tmp=getmax(10000-VA[i]+1)+VA[i];//10000-VA[i]的作用是 Va[i]越大,其10000-VA[i]越小,我们找比VA[i]大的序列最大和 直接树状数组找前面比10000-VA[i]小的的sum最大值即可
        fa[i]=max(fa[i-1],tmp);
        modify(10000-VA[i]+1,tmp);
    }
    mset(bt,0);
    fb[id+n]=0;
    for(int i=id+n-1; i>=id; --i)
    {
        if(VA[i]==10000)
        {
            fb[i]=fb[i+1];
            continue;
        }
        int tmp=getmax(10000-VA[i]+1)+VA[i];
        fb[i]=max(fb[i+1],tmp);
        modify(10000-VA[i]+1,tmp);
    }
    int ans=0;
    for(int i=id; i<id+n; ++i)
        ans=max(ans,fa[i]+fb[i+1]);
    return ans;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    while(cin>>n)
    {
        vt=0;
        for(int i=0; i<n; ++i)
        {
            cin>>VA[i];
            VA[i+n]=VA[i];
            if(VA[i]==10000)
                vc[vt++]=i;
        }
        int ans=0;
        for(int i=0; i<vt; ++i)
            ans=max(ans,solve(vc[i]));
        cout<<ans+10000<<endl;
    }
    return 0;
}

超时代码:

环形左边递增右边递减,上下一翻就是左边递减右边递增,那么求的之后只需总左边求递增,从右边求递减即可。

按道理没错,两个求出来的结果应该是一样的。可我的超时(;´༎ຶД༎ຶ`)

#include<bits/stdc++.h>
#define mset(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int MAX=10000;
int vc[20],vt;//存储10000的下标
int fa[200110],fb[200110],VA[200100];
int bt[10010],n;
int lowbit(int k)
{
    return k&-k;
}
void modify(int k,int val)
{
    while(k<=MAX)
    {
        bt[k]=max(bt[k],val);
        k+=lowbit(k);
    }
}
int getmax(int k)
{
    int ans=0;
    while(k>0)
    {
        ans=max(ans,bt[k]);
        k-=lowbit(k);
    }
    return ans;
}
int solve(int id)//id作为项链中心 返回最大值
{
    fa[id]=0;
    for(int i=1;i<=MAX;++i) bt[i]=0;
    for(int i=id+1; i<=id+n; ++i)
    {
        if(VA[i]==10000)
        {
            fa[i]=fa[i-1];
            continue;
        }
        int tmp=getmax(VA[i])+VA[i];
        fa[i]=max(fa[i-1],tmp);
        modify(VA[i],tmp);
    }
    for(int i=1;i<=MAX;++i) bt[i]=0;
    fb[id+n]=0;
    for(int i=id+n-1; i>=id; --i)
    {
        if(VA[i]==10000)
        {
            fb[i]=fb[i+1];
            continue;
        }
        int tmp=getmax(VA[i])+VA[i];
        fb[i]=max(fb[i+1],tmp);
        modify(VA[i],tmp);
    }
    int ans=0;
    for(int i=id; i<id+n; ++i)
        ans=max(ans,fa[i]+fb[i+1]);
    return ans;
}
int main()
{
    while(~scanf("%d",&n))
    {
        vt=0;
        for(int i=0; i<n; ++i)
        {
            scanf("%d",VA+i);
            VA[i+n]=VA[i];
            if(VA[i]==10000)
                vc[vt++]=i;
        }
        int ans=0;
        for(int i=0; i<vt; ++i)
        {
            ans=max(ans,solve(vc[i]));
        }
        printf("%d\n",ans+10000);
    }
    return 0;
}