''' 解题思路: 动态规划算法, dp[i][j]定义为:字符串从i到j是含有回文子序列的长度 1、当i==j时,dp[i][j]==1 2、当j-i<=2时,如s[i]==s[j],dp[i][j] = j-i+1 3、当j-i>2时, 如s[i]==s[j],dp[i][j] = dp[i+1][j-1]+2 4、如s[i]!=s[j]时,dp[i][j] = max(dp[i][j-1], dp[i+1][j]) 由于递推公式: dp[i][j] = dp[i+1][j-1]+2,i要从大的数值,j要从小的数值开始计算 #============================================================================================= ''' # -*- coding:utf-8 -*- class Solution: def longestPalindromeSubSeq(self, A, n): # write code here #print(A) #print(n) dp = [[0]*n for _ in range(n)] for i in range(n-1,-1,-1): for j in range(i,n): if A[i]==A[j]: if j-i<=2: dp[i][j] = j-i+1 else: dp[i][j] = dp[i+1][j-1]+2 else: dp[i][j] = max(dp[i][j-1], dp[i+1][j]) #for i in dp: # print(i) return dp[0][-1] A = 'abccsb' # 4 n = len(A) s = Solution() print(s.longestPalindromeSubSeq(A,n))