前言

在介绍卷积神经网络中的1x1卷积之前,首先回顾卷积网络的基本概念。

1.卷积核(convolutional kernel):可以看作对某个局部的加权求和;它是对应局部感知,它的原理是在观察某个物体时我们既不能观察每个像素也不能一次观察整体,而是先从局部开始认识,这就对应了卷积。
卷积核的大小一般有1x1,3x3和5x5的尺寸(一般是奇数x奇数)。卷积核的个数就对应输出的通道数(channels),这里需要说明的是对于输入的每个通道,输出每个通道上的卷积核是不一样的。比如输入是28x28x192(WxDxK,K代表通道数),然后在3x3的卷积核,卷积通道数为128,那么卷积的参数有3x3x192x128,其中前两个对应的每个卷积里面的参数,后两个对应的卷积总的个数(一般理解为,卷积核的权值共享只在每个单独通道上有效,至于通道与通道间的对应的卷积核是独立不共享的,所以这里是192x128)。

2.池化(pooling):卷积特征往往对应某个局部的特征。要得到global的特征需要将全局的特征执行一个aggregation(聚合)。
池化就是这样一个操作,对于每个卷积通道,将更大尺寸(甚至是global)上的卷积特征进行pooling就可以得到更有全局性的特征。这里的pooling当然就对应了cross region。与1x1的卷积相对应,而1x1卷积可以看作一个cross channel的pooling操作。pooling的另外一个作用就是升维或者降维,后面我们可以看到1x1的卷积也有相似的作用。

1x1卷积核
1x1卷积,又称为网中网(Network in Network)。
  这里通过一个例子来直观地介绍1x1卷积。输入6x6x1的矩阵,这里的1x1卷积形式为1x1x1,即为元素2,输出也是6x6x1的矩阵。但输出矩阵中的每个元素值是输入矩阵中每个元素值x2的结果。

  让我们看一下真正work的示例。当输入为6x6x32时,1x1卷积的形式是1x1x32,当只有一个1x1卷积核的时候,此时输出为6x6x1。此时便可以体会到1x1卷积的实质作用:降维。当1x1卷积核的个数小于输入channels数量时,即降维。

其实1x1卷积,可以看成一种全连接(full connection)。

  上述列举的全连接例子不是很严谨,因为图像的一层相比于神经元还是有区别的,图像是2D矩阵,而神经元就是一个数字,但是即便是一个2D矩阵(可以看成很多个神经元)的话也还是只需要一个参数(1*1的核),这就是因为参数的权值共享。

注:1x1卷积一般只改变输出通道数(channels),而不改变输出的宽度和高度

1x1卷积核作用

降维/升维

  由于 1×1 并不会改变 height 和 width,改变通道的第一个最直观的结果,就是可以将原本的数据量进行增加或者减少。这里看其他文章或者博客中都称之为升维、降维。但我觉得维度并没有改变,改变的只是 height × width × channels 中的 channels 这一个维度的大小而已。

增加非线性
  1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

  备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuron。

跨通道信息交互(channal 的变换)
  例子:使用1x1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3x3,64channels的卷积核后面添加一个1x1,28channels的卷积核,就变成了3x3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。

  注意:只是在channel维度上做线性组合,W和H上是共享权值的sliding window