文章目录
一、List集合
我们掌握了Collection接口的使用后,再来看看Collection接口中的子类,他们都具备那些特性呢?
接下来,我们一起学习Collection中的常用几个子类(java.util.List
集合、java.util.Set
集合)。
1.1 List接口介绍
java.util.List
接口继承自 Collection
接口,是单列集合的一个重要分支,习惯性地会将实现了List
接口的对象称为List集合。在 List 集合中允许出现重复的元素,所有的元素是以一种线性方式进行存储的,在程序中可以通过索引来访问集合中的指定元素。另外,List集合还有一个特点就是元素有序,即元素的存入顺序和取出顺序一致。
总结List接口特点:
- 它是一个元素存取有序的集合。例如,存元素的顺序是11、22、33。那么集合中,元素的存储就是按照11、22、33的顺序完成的)。
- 它是一个带有索引的集合,通过索引就可以精确的操作集合中的元素(与数组的索引是一个道理)。
- 集合中可以有重复的元素,通过元素的equals方法,来比较是否为重复的元素。
tips:前面已经学习过List接口的子类java.util.ArrayList类,该类中的方法都是来自List中定义。
1.2 List接口中常用方法
List作为Collection集合的子接口,不但继承了Collection接口中的全部方法,而且还增加了一些根据元素索引来操作集合的特有方法,如下:
public void add(int index, E element)
: 将指定的元素,添加到该集合中的指定位置上。public E get(int index)
:返回集合中指定位置的元素。public E remove(int index)
: 移除列表中指定位置的元素, 返回的是被移除的元素。public E set(int index, E element)
:用指定元素替换集合中指定位置的元素,返回值的更新前的元素。
List集合特有的方法都是跟索引相关。
public class Demo01List {
public static void main(String[] args) {
//创建一个List集合对象,多态
List<String> list = new ArrayList<>();
//使用add方法往集合中添加元素
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("a");
//打印集合
System.out.println(list);//[a, b, c, d, a] 不是地址重写了toString
//public void add(int index, E element): 将指定的元素,添加到该集合中的指定位置上。
//在c和d之间添加一个itheima
list.add(3,"itheima");//[a, b, c, itheima, d, a]
System.out.println(list);
//public E remove(int index): 移除列表中指定位置的元素, 返回的是被移除的元素。
//移除元素
String removeE = list.remove(2);
System.out.println("被移除的元素:"+removeE);//被移除的元素:c
System.out.println(list);//[a, b, itheima, d, a]
//public E set(int index, E element):用指定元素替换集合中指定位置的元素,返回值的更新前的元素。
//把最后一个a,替换为A
String setE = list.set(4, "A");
System.out.println("被替换的元素:"+setE);//被替换的元素:a
System.out.println(list);//[a, b, itheima, d, A]
//List集合遍历有3种方式
//使用普通的for循环
for(int i=0; i<list.size(); i++){
//public E get(int index):返回集合中指定位置的元素。
String s = list.get(i);
System.out.println(s);
}
System.out.println("-----------------");
//使用迭代器
Iterator<String> it = list.iterator();
while(it.hasNext()){
String s = it.next();
System.out.println(s);
}
System.out.println("-----------------");
//使用增强for
for (String s : list) {
System.out.println(s);
}
String r = list.get(5);//IndexOutOfBoundsException: Index 5 out-of-bounds for length 5
System.out.println(r);
}
}
注意:
操作索引的时候,一定要防止索引越界异常
IndexOutOfBoundsException
:索引越界异常,一般集合会报ArrayIndexOutOfBoundsException
:数组索引越界异常StringIndexOutOfBoundsException
:字符串索引越界异常
二、List的子类
2.1 ArrayList集合
java.util.ArrayList
集合数据存储的结构是数组结构。元素增删慢,查找快,由于日常开发中使用最多的功能为查询数据、遍历数据,所以ArrayList
是最常用的集合。
许多程序员开发时非常随意地使用 ArrayList
完成任何需求,并不严谨,这种用法是不提倡的。
2.2 LinkedList集合
java.util.LinkedList
集合数据存储的结构是链表结构。方便元素添加、删除的集合。
LinkedList是一个双向链表,那么双向链表是什么样子的呢,我们用个图了解下
实际开发中对一个集合元素的添加与删除经常涉及到首尾操作,而 LinkedList
提供了大量首尾操作的方法。这些方法我们作为了解即可:
public void addFirst(E e)
: 将指定元素插入此列表的开头。public void addLast(E e)
: 将指定元素添加到此列表的结尾。public E getFirst()
: 返回此列表的第一个元素。public E getLast()
: 返回此列表的最后一个元素。public E removeFirst()
: 移除并返回此列表的第一个元素。public E removeLast()
: 移除并返回此列表的最后一个元素。public E pop()
: 从此列表所表示的堆栈处弹出一个元素。public void push(E e)
: 将元素推入此列表所表示的堆栈。public boolean isEmpty()
:如果列表不包含元素,则返回true。
LinkedList
是 List
的子类,List中的方法 LinkedList
都是可以使用,这里就不做详细介绍,我们只需要了解 LinkedList 的特有方法即可。在开发时,LinkedList集合也可以作为堆栈,队列的结构使用。(了解即可)
总结LinkedList集合的特点:
- 底层是一个链表结构: 查询慢,增删快
- 里边包含了大量操作首尾元素的方法
注意:使用LinkedList集合特有的方法,不能使用多态
方法演示:
public class Demo02LinkedList {
public static void main(String[] args) {
show03();
}
/* - public E removeFirst():移除并返回此列表的第一个元素。 - public E removeLast():移除并返回此列表的最后一个元素。 - public E pop():从此列表所表示的堆栈处弹出一个元素。此方法相当于 removeFirst */
private static void show03() {
//创建LinkedList集合对象
LinkedList<String> linked = new LinkedList<>();
//使用add方法往集合中添加元素
linked.add("a");
linked.add("b");
linked.add("c");
System.out.println(linked);//[a, b, c]
//String first = linked.removeFirst();
String first = linked.pop();
System.out.println("被移除的第一个元素:"+first);
String last = linked.removeLast();
System.out.println("被移除的最后一个元素:"+last);
System.out.println(linked);//[b]
}
/* - public E getFirst():返回此列表的第一个元素。 - public E getLast():返回此列表的最后一个元素。 */
private static void show02() {
//创建LinkedList集合对象
LinkedList<String> linked = new LinkedList<>();
//使用add方法往集合中添加元素
linked.add("a");
linked.add("b");
linked.add("c");
//linked.clear();//清空集合中的元素 在获取集合中的元素会抛出NoSuchElementException
//public boolean isEmpty():如果列表不包含元素,则返回true。
if(!linked.isEmpty()){
String first = linked.getFirst();
System.out.println(first);//a
String last = linked.getLast();
System.out.println(last);//c
}
}
/* - public void addFirst(E e):将指定元素插入此列表的开头。 - public void addLast(E e):将指定元素添加到此列表的结尾。 - public void push(E e):将元素推入此列表所表示的堆栈。此方法等效于 addFirst(E)。 */
private static void show01() {
//创建LinkedList集合对象
LinkedList<String> linked = new LinkedList<>();
//使用add方法往集合中添加元素
linked.add("a");
linked.add("b");
linked.add("c");
System.out.println(linked);//[a, b, c]
//public void addFirst(E e):将指定元素插入此列表的开头。此方法等效于 push()
//linked.addFirst("www");
linked.push("www");
System.out.println(linked);//[www, a, b, c]
//public void addLast(E e):将指定元素添加到此列表的结尾。此方法等效于 add()
linked.addLast("com");
System.out.println(linked);//[www, a, b, c, com]
}
}
三、Set接口
java.util.Set
接口和 java.util.List
接口一样,同样继承自 Collection
接口,它与Collection
接口中的方法基本一致,并没有对 Collection
接口进行功能上的扩充,只是比 Collection
接口更加严格了。与 List
接口不同的是,Set
接口中元素无序,并且都会以某种规则保证存入的元素不出现重复。
Set接口的特点:
- 不允许存储重复的元素
- 没有索引,没有带索引的方法,也不能使用普通的for循环遍历
Set
集合有多个子类,这里我们介绍其中的java.util.HashSet
、java.util.LinkedHashSet
这两个集合。
tips : Set集合取出元素的方式可以采用:迭代器、增强for。
3.1 HashSet集合介绍
java.util.HashSet
是Set
接口的一个实现类,它所存储的元素是不可重复的,并且元素都是无序的(即存取顺序不一致)。java.util.HashSet
底层的实现其实是一个 java.util.HashMap
支持,由于我们暂时还未学习,先做了解。
HashSet
是根据对象的哈希值来确定元素在集合中的存储位置,因此具有良好的存取和查找性能。保证元素唯一性的方式依赖于:hashCode
与equals
方法。
总结HashSet特点:
- 不允许存储重复的元素
- 没有索引,没有带索引的方法,也不能使用普通的for循环遍历
- 是一个无序的集合,存储元素和取出元素的顺序有可能不一致
- 底层是一个哈希表结构(查询的速度非常的快)
我们先来使用一下Set集合存储,看下现象,再进行原理的讲解:
public class Demo01Set {
public static void main(String[] args) {
Set<Integer> set = new HashSet<>();
//使用add方法往集合中添加元素
set.add(1);
set.add(3);
set.add(2);
set.add(1);
//使用迭代器遍历set集合
Iterator<Integer> it = set.iterator();
while (it.hasNext()){
Integer n = it.next();
System.out.println(n);// 1,2,3
}
//使用增强for遍历set集合
System.out.println("-----------------");
for (Integer i : set) {
System.out.println(i); // 1,2,3
}
}
}
输出结果,说明集合中不能存储重复元素:
tips : 根据结果我们发现字符串 “1” 只存储了一个,也就是说重复的元素 set 集合不存储。
3.2 HashSet集合存储数据的结构(哈希表)
什么是哈希表呢?
在JDK1.8之前,哈希表底层采用数组+链表实现,即使用链表处理冲突,同一 hash 值的链表都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,哈希表存储采用数组+链表+红黑树实现,当链表长度超过阈值 8 时,将链表转换为红黑树,这样大大减少了查找时间。
哈希值:是一个十进制的整数,由系统随机给出(就是对象的地址值,是一个逻辑地址,是模拟出来得到地址,不是数据实际存储的物理地址)
简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下图所示。
看到这张图就有人要问了,这个是怎么存储的呢?
为了方便大家的理解我们结合一个存储流程图来说明一下:
总而言之,JDK1.8引入红黑树大程度优化了HashMap的性能,那么对于我们来讲保证HashSet集合元素的唯一,其实就是根据对象的hashCode和equals方法来决定的。如果我们往集合中存放自定义的对象,那么保证其唯一,就必须复写hashCode和equals方法建立属于当前对象的比较方式。
3.3 HashSet存储自定义类型元素
给HashSet中存放自定义类型元素时,需要重写对象中的hashCode和equals方法,建立自己的比较方式,才能保证HashSet集合中的对象唯一
创建自定义Student类,要求同名同年龄的人,视为同一个人,只能存储一次
public class Student {
private String name;
private int age;
public Student() {
}
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Student student = (Student) o;
return age == student.age &&
Objects.equals(name, student.name);
}
@Override
public int hashCode() {
// 返回该对象的哈希码值。
return Objects.hash(name, age);
}
}
public class HashSetDemo2 {
public static void main(String[] args) {
//创建集合对象 该集合中存储 Student类型对象
HashSet<Student> stuSet = new HashSet<Student>();
//存储
Student stu = new Student("于谦", 43);
stuSet.add(stu);
stuSet.add(new Student("郭德纲", 44));
stuSet.add(new Student("于谦", 43));
stuSet.add(new Student("郭麒麟", 23));
stuSet.add(stu);
for (Student stu2 : stuSet) {
System.out.println(stu2);
}
}
}
执行结果:
Student [name=郭德纲, age=44]
Student [name=于谦, age=43]
Student [name=郭麒麟, age=23]
3.4 LinkedHashSet
我们知道HashSet保证元素唯一,可是元素存放进去是没有顺序的,那么我们要保证有序,怎么办呢?
在HashSet下面有一个子类java.util.LinkedHashSet
,它是链表和哈希表组合的一个数据存储结构。
多了一条链表(记录元素的存储顺序),保证元素有序
演示代码如下:
public class Demo04LinkedHashSet {
public static void main(String[] args) {
HashSet<String> set = new HashSet<>();
set.add("www");
set.add("abc");
set.add("abc");
set.add("jiangqi");
System.out.println(set);//[abc, www, jiangqi] 无序,不允许重复
LinkedHashSet<String> linked = new LinkedHashSet<>();
linked.add("www");
linked.add("abc");
linked.add("abc");
linked.add("jiangqi");
System.out.println(linked);//[www, abc, jiangqi] 有序,不允许重复
}
}
3.5 可变参数
在JDK1.5之后,如果我们定义一个方法需要接受多个参数,并且多个参数类型一致,我们可以对其简化成如下格式:
修饰符 返回值类型 方法名(参数类型... 形参名){ }
其实这个书写完全等价与
修饰符 返回值类型 方法名(参数类型[] 形参名){ }
只是后面这种定义,在调用时必须传递数组,而前者可以直接传递数据即可。
JDK1.5以后。出现了简化操作。… 用在参数上,称之为可变参数。
同样是代表数组,但是在调用这个带有可变参数的方法时,不用创建数组(这就是简单之处),直接将数组中的元素作为实际参数进行传递,其实编译成的class文件,将这些元素先封装到一个数组中,在进行传递。这些动作都在编译.class文件时,自动完成了。
可变参数的原理:
- 可变参数底层就是一个数组,根据传递参数个数不同,会创建不同长度的数组,来存储这些参数
- 传递的参数个数,可以是0个(不传递),1,2…多个
代码演示:
public class ChangeArgs {
public static void main(String[] args) {
int[] arr = {
1, 4, 62, 431, 2 };
int sum = getSum(arr);
System.out.println(sum);
// 6 7 2 12 2121
// 求 这几个元素和 6 7 2 12 2121
int sum2 = getSum(6, 7, 2, 12, 2121);
System.out.println(sum2);
}
/* * 完成数组 所有元素的求和 原始写法 public static int add(int[] arr){ int sum = 0; for(int a : arr){ sum += a; } return sum; } */
//可变参数写法
public static int getSum(int... arr) {
int sum = 0;
for (int a : arr) {
sum += a;
}
return sum;
}
}
注意:如果在方法书写时,这个方法拥有多参数,参数中包含可变参数,可变参数一定要写在参数列表的末尾位置。
四、Collections
4.1 常用功能
java.utils.Collections
是集合工具类,用来对集合进行操作。部分方法如下:
public static <T> boolean addAll(Collection<T> c, T... elements)
: 往集合中添加一些元素。public static void shuffle(List<?> list) 打乱顺序
: 打乱集合顺序。public static <T> void sort(List<T> list)
: 将集合中元素按照默认规则排序。public static <T> void sort(List<T> list,Comparator<? super T> )
: 将集合中元素按照指定规则排序。
代码演示:
public class Demo01Collections {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
//往集合中添加多个元素
/*list.add("a"); list.add("b"); list.add("c"); list.add("d"); list.add("e");*/
//public static <T> boolean addAll(Collection<T> c, T... elements):往集合中添加一些元素。
Collections.addAll(list,"a","b","c","d","e");
System.out.println(list);//[a, b, c, d, e]
//public static void shuffle(List<?> list) 打乱顺序:打乱集合顺序。
Collections.shuffle(list);
System.out.println(list);//[b, d, c, a, e], [b, d, c, a, e]
//public static <T> void sort(List<T> list) : 将集合中元素按照默认规则排序。
Collections.sort(list);
System.out.println(list);//[a, b, c, d, e]
}
}
代码演示之后 ,发现我们的集合按照顺序进行了排列,可是这样的顺序是采用默认的顺序,如果想要指定顺序那该怎么办呢?
我们发现还有个方法没有讲,public static <T> void sort(List<T> list,Comparator<? super T> )
:将集合中元素按照指定规则排序。接下来讲解一下指定规则的排列。
4.2 Comparator比较器
我们还是先研究这个方法
public static <T> void sort(List<T> list)
: 将集合中元素按照默认规则排序。
不过这次存储的是字符串类型。
public class CollectionsDemo2 {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<String>();
list.add("cba");
list.add("aba");
list.add("sba");
list.add("nba");
//排序方法
Collections.sort(list);
System.out.println(list);
}
}
结果:
[aba, cba, nba, sba]
我们使用的是默认的规则完成字符串的排序,那么默认规则是怎么定义出来的呢?
说到排序了,简单的说就是两个对象之间比较大小,那么在JAVA中提供了两种比较实现的方式,一种是比较死板的采用 java.lang.Comparable
接口去实现,一种是灵活的当我需要做排序的时候在去选择的 java.util.Comparator
接口完成。
那么我们采用的 public static <T> void sort(List<T> list)
这个方法完成的排序,实际上要求了被排序的类型需要实现 Comparable
接口完成比较的功能,在String类型上如下:
public final class String implements java.io.Serializable, Comparable<String>, CharSequence {
String类实现了这个接口,并完成了比较规则的定义,但是这样就把这种规则写死了,那比如我想要字符串按照第一个字符降序排列,那么这样就要修改String的源代码,这是不可能的了,那么这个时候我们可以使用
public static <T> void sort(List<T> list,Comparator<? super T> )
方法灵活的完成,这个里面就涉及到了Comparator
这个接口,位于位于java.util包下,排序是comparator能实现的功能之一,该接口代表一个比较器,比较器具有可比性!顾名思义就是做排序的,通俗地讲需要比较两个对象谁排在前谁排在后,那么比较的方法就是:
-
public int compare(String o1, String o2)
:比较其两个参数的顺序。两个对象比较的结果有三种:大于,等于,小于。
如果要按照升序排序,
则o1 小于o2,返回(负数),相等返回0,o1大于o2返回(正数)
如果要按照降序排序
则o1 小于o2,返回(正数),相等返回0,o1大于o2返回(负数)
操作如下:
public class CollectionsDemo3 {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<String>();
list.add("cba");
list.add("aba");
list.add("sba");
list.add("nba");
//排序方法 按照第一个单词的降序
Collections.sort(list, new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
return o2.charAt(0) - o1.charAt(0);
}
});
System.out.println(list);
}
}
结果如下:
[sba, nba, cba, aba]
4.3 简述Comparable和Comparator两个接口的区别。
Comparable:强行对实现它的每个类的对象进行整体排序。这种排序被称为类的自然排序,类的compareTo
方法被称为它的自然比较方法。只能在类中实现compareTo()
一次,不能经常修改类的代码实现自己想要的排序。实现此接口的对象列表(和数组)可以通过Collections.sort(和Arrays.sort)
进行自动排序,对象可以用作有序映射中的键或有序集合中的元素,无需指定比较器。
Comparator:强行对某个对象进行整体排序。可以将Comparator
传递给sort
方法(如Collections.sort或 Arrays.sort
),从而允许在排序顺序上实现精确控制。还可以使用Comparator来控制某些数据结构(如有序set或有序映射)的顺序,或者为那些没有自然顺序的对象collection提供排序。
简单的说
Comparable:自己(this)和别人(参数)比较,自己需要实现Comparable接口,重写比较的规则compareTo方法
Comparator:相当于找一个第三方的裁判,比较两个
4.4 练习
创建一个学生类,存储到ArrayList集合中完成指定排序操作。
Student 初始类
public class Student{
private String name;
private int age;
public Student() {
}
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
测试类:
public class Demo {
public static void main(String[] args) {
// 创建四个学生对象 存储到集合中
ArrayList<Student> list = new ArrayList<Student>();
list.add(new Student("rose",18));
list.add(new Student("jack",16));
list.add(new Student("abc",16));
list.add(new Student("ace",17));
list.add(new Student("mark",16));
/* 让学生 按照年龄排序 升序 */
// Collections.sort(list);//要求 该list中元素类型 必须实现比较器Comparable接口
for (Student student : list) {
System.out.println(student);
}
}
}
发现,当我们调用Collections.sort()方法的时候 程序报错了。
原因:如果想要集合中的元素完成排序,那么必须要实现比较器Comparable接口。
于是我们就完成了Student类的一个实现,如下:
public class Student implements Comparable<Student>{
....
@Override
public int compareTo(Student o) {
//return 0;//认为元素都是相同的
//自定义比较的规则,比较两个人的年龄(this,参数Student)
//return this.getAge() - o.getAge();//年龄升序排序
return this.age-o.age;//升序
}
}
再次测试,代码就OK 了效果如下:
Student{
name='jack', age=16}
Student{
name='abc', age=16}
Student{
name='mark', age=16}
Student{
name='ace', age=17}
Student{
name='rose', age=18}
4.5 扩展(了解即可)
如果在使用的时候,想要独立的定义规则去使用 可以采用Collections.sort(List list,Comparetor<T> c)
方式,自己定义规则:
Collections.sort(list, new Comparator<Student>() {
@Override
public int compare(Student o1, Student o2) {
return o2.getAge()-o1.getAge();//以学生的年龄降序
}
});
效果:
Student{name='rose', age=18}
Student{name='ace', age=17}
Student{name='jack', age=16}
Student{name='abc', age=16}
Student{name='mark', age=16}
如果想要规则更多一些,可以参考下面代码:
Collections.sort(list, new Comparator<Student>() {
@Override
public int compare(Student o1, Student o2) {
// 年龄降序
int result = o2.getAge()-o1.getAge();//年龄降序
if(result==0){
//第一个规则判断完了 下一个规则 姓名的首字母 升序
result = o1.getName().charAt(0)-o2.getName().charAt(0);
}
return result;
}
});
效果如下:
Student{name='rose', age=18}
Student{name='ace', age=17}
Student{name='abc', age=16}
Student{name='jack', age=16}
Student{name='mark', age=16}