解题思路
这是一道丑数的经典题目,主要思路如下:
-
问题分析:
- 丑数是只包含因子2、3和5的数
- 1是第一个丑数
- 需要找到第
个丑数
- 例如:1, 2, 3, 4, 5, 6, 8, 9, 10, 12是前10个丑数
-
解决方案:
- 方法一:暴力法(给定代码的方案)
- 从1开始遍历每个数
- 判断是否是丑数
- 直到找到第
个丑数
- 方法二:动态规划(优化方案)
- 用三个指针记录乘2、3、5的位置
- 每次取最小值作为新的丑数
- 更新对应指针
- 方法一:暴力法(给定代码的方案)
代码
#include <iostream>
using namespace std;
// 优化解法
int getNthUglyNumber(int n) {
if(n <= 0) return 0;
int* dp = new int[n];
dp[0] = 1;
int p2 = 0, p3 = 0, p5 = 0;
for(int i = 1; i < n; i++) {
int next2 = dp[p2] * 2;
int next3 = dp[p3] * 3;
int next5 = dp[p5] * 5;
dp[i] = min(next2, min(next3, next5));
if(dp[i] == next2) p2++;
if(dp[i] == next3) p3++;
if(dp[i] == next5) p5++;
}
int result = dp[n-1];
delete[] dp;
return result;
}
int main() {
int n;
while(cin >> n) {
cout << getNthUglyNumber(n) << endl;
}
return 0;
}
import java.util.Scanner;
public class Main {
public static int getNthUglyNumber(int n) {
if(n <= 0) return 0;
int[] dp = new int[n];
dp[0] = 1;
int p2 = 0, p3 = 0, p5 = 0;
for(int i = 1; i < n; i++) {
int next2 = dp[p2] * 2;
int next3 = dp[p3] * 3;
int next5 = dp[p5] * 5;
dp[i] = Math.min(next2, Math.min(next3, next5));
if(dp[i] == next2) p2++;
if(dp[i] == next3) p3++;
if(dp[i] == next5) p5++;
}
return dp[n-1];
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()) {
int n = sc.nextInt();
System.out.println(getNthUglyNumber(n));
}
sc.close();
}
}
def get_nth_ugly_number(n: int) -> int:
if n <= 0:
return 0
dp = [0] * n
dp[0] = 1
p2 = p3 = p5 = 0
for i in range(1, n):
next2 = dp[p2] * 2
next3 = dp[p3] * 3
next5 = dp[p5] * 5
dp[i] = min(next2, next3, next5)
if dp[i] == next2:
p2 += 1
if dp[i] == next3:
p3 += 1
if dp[i] == next5:
p5 += 1
return dp[n-1]
def main():
while True:
try:
n = int(input())
print(get_nth_ugly_number(n))
except EOFError:
break
if __name__ == "__main__":
main()
算法及复杂度
- 算法:动态规划
- 时间复杂度:
- 只需要遍历一次
- 空间复杂度:
- 需要dp数组存储中间结果