题目:
解析:
贪心题,类似于国王游戏
考虑两个相邻的牛\(i\),\(j\)
设他们上面的牛的重量一共为\(sum\)
把\(i\)放在上面,危险值分别为\(x_1=sum-s_i\),$ x_2=sum+w_i-s_j$
把\(j\)放在上面,危险值分别为\(x_3=sum-s_j\), \(x_4=sum+w_j-s_i\)
若把j放在上面更优,则有\(max(x_3,x_4)<max(x_1,x_2)\)
有四种情况
\(x_3<x_1\)
\(x_3<x_2\)
\(x_4<x_1\)
\(x_4<x_2\)
显然的是\(x_3<x_2\),\(x_1>x_4\)
而\(s_i\)和\(s_j\)关系不确定
所以一定有\(w_i+s_i>w_j+w_j\)
按\(w+s\)排序从小到大排序,大的在下面
代码:
很简单
#include <iostream>
#include <algorithm>
#include <cstdio>
#define int long long
using namespace std;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
int n;
struct node {
int w, s;
bool operator <(const node &oth) const {
return w + s < oth.w + oth.s;
}
} e[N];
template<class T>inline void read(T &x) {
x = 0; char ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
return;
}
signed main() {
read(n);
for (int i = 1; i <= n; ++i) read(e[i].w), read(e[i].s);
sort(e + 1, e + 1 + n);
int sum = 0, ans = -INF;
for (int i = 1; i <= n; ++i) ans = max(ans, sum - e[i].s), sum += e[i].w;
cout << ans << endl;
}