package java.util.concurrent; import java.io.ObjectStreamField; import java.io.Serializable; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.AbstractMap; import java.util.Arrays; import java.util.Collection; import java.util.Comparator; import java.util.Enumeration; import java.util.HashMap; import java.util.Hashtable; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; import java.util.Spliterator; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; import java.util.concurrent.locks.ReentrantLock; import java.util.function.BiConsumer; import java.util.function.BiFunction; import java.util.function.BinaryOperator; import java.util.function.Consumer; import java.util.function.DoubleBinaryOperator; import java.util.function.Function; import java.util.function.IntBinaryOperator; import java.util.function.LongBinaryOperator; import java.util.function.ToDoubleBiFunction; import java.util.function.ToDoubleFunction; import java.util.function.ToIntBiFunction; import java.util.function.ToIntFunction; import java.util.function.ToLongBiFunction; import java.util.function.ToLongFunction; import java.util.stream.Stream; //并发安全HashMap CAS + synchronized public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V>, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* ---------------- Constants -------------- */ //最大容量 private static final int MAXIMUM_CAPACITY = 1 << 30; //默认容量 private static final int DEFAULT_CAPACITY = 16; //数组长度最大值 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //为以前的版本所使用(兼容性),当前没有用上 private static final int DEFAULT_CONCURRENCY_LEVEL = 16; //负载因子 private static final float LOAD_FACTOR = 0.75f; //桶数组中由链表转换为红黑树的阈值,9个开始转换为红黑树,树化阈值 static final int TREEIFY_THRESHOLD = 8; //桶数组中由红黑树转变为链表的阈值 static final int UNTREEIFY_THRESHOLD = 6; //最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树) //因为当桶数组长度过短,应该resize,而不是树化 //TREEIFY_THRESHOLD*4 static final int MIN_TREEIFY_CAPACITY = 64; //每个传输步骤的最小重新绑定数。范围被细分以允许多个调整大小线程。 // 此值用作下限,以避免重设器遇到过多的内存争用。该值至少应为默认容量。 private static final int MIN_TRANSFER_STRIDE = 16; //cas算法的stamp的位数 private static int RESIZE_STAMP_BITS = 16; //可以帮助调整大小的最大线程数 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; /** * The bit shift for recording size stamp in sizeCtl. */ private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; //节点哈希字段的编码 static final int MOVED = -1; // hash for forwarding nodes static final int TREEBIN = -2; // hash for roots of trees static final int RESERVED = -3; // hash for transient reservations static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash //cpu核心数 static final int NCPU = Runtime.getRuntime().availableProcessors(); //序列化兼容性 private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField("segments", Segment[].class), new ObjectStreamField("segmentMask", Integer.TYPE), new ObjectStreamField("segmentShift", Integer.TYPE) }; /* ---------------- Nodes -------------- */ //Node,桶数组 static class Node<K, V> implements Map.Entry<K, V> { final int hash; final K key; volatile V val; volatile Node<K, V> next; Node(int hash, K key, V val, Node<K, V> next){ this.hash = hash; this.key = key; this.val = val; this.next = next; } public final K getKey(){ return key; } public final V getValue(){ return val; } public final int hashCode(){ return key.hashCode() ^ val.hashCode(); } public final String toString(){ return key + "=" + val; } public final V setValue(V value){ throw new UnsupportedOperationException(); } public final boolean equals(Object o){ Object k, v, u; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>) o).getKey()) != null && (v = e.getValue()) != null && (k == key || k.equals(key)) && (v == (u = val) || v.equals(u))); } // Node<K, V> find(int h, Object k){ Node<K, V> e = this; if(k != null){ do { K ek; if(e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; } while ((e = e.next) != null); } return null; } } /* ---------------- Static utilities -------------- */ // 高16与低16位异或运算,HASH_BITS=0x7FFFFFFF hash函数 static final int spread(int h){ return (h ^ (h >>> 16)) & HASH_BITS; } //找一个恰好比c的大的2的幂 private static final int tableSizeFor(int c){ int n = c - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } // 比较器 static Class<?> comparableClassFor(Object x){ if(x instanceof Comparable){ Class<?> c; Type[] ts, as; Type t; ParameterizedType p; if((c = x.getClass()) == String.class) // bypass checks return c; if((ts = c.getGenericInterfaces()) != null){ for(int i = 0; i < ts.length; ++i){ if(((t = ts[i]) instanceof ParameterizedType) && ((p = (ParameterizedType) t).getRawType() == Comparable.class) && (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type arg is c return c; } } } return null; } // 比较器 @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable static int compareComparables(Class<?> kc, Object k, Object x){ return (x == null || x.getClass() != kc ? 0 : ((Comparable) k).compareTo(x)); } /* ---------------- Table element access -------------- */ //寻找指定数组在内存中i位置的数据 @SuppressWarnings("unchecked") static final <K, V> Node<K, V> tabAt(Node<K, V>[] tab, int i){ return (Node<K, V>) U.getObjectVolatile(tab, ((long) i << ASHIFT) + ABASE); } //cas算法 static final <K, V> boolean casTabAt(Node<K, V>[] tab, int i, Node<K, V> c, Node<K, V> v){ return U.compareAndSwapObject(tab, ((long) i << ASHIFT) + ABASE, c, v); } //设置指定数组在内存中i位置的数据 static final <K, V> void setTabAt(Node<K, V>[] tab, int i, Node<K, V> v){ U.putObjectVolatile(tab, ((long) i << ASHIFT) + ABASE, v); } /* ---------------- Fields -------------- */ transient volatile Node<K, V>[] table; //桶数组 /** * The next table to use; non-null only while resizing. */ private transient volatile Node<K, V>[] nextTable; // //基本计数器值,主要在没有争用时使用,但在表初始化竞争期间也用作回退。通过CAS更新。 private transient volatile long baseCount; //桶数组初始化和,resize方法,-1表示初始化,-(1+正在调整大小的线程数) private transient volatile int sizeCtl; // 调整大小时要拆分的下一个表索引(加上一个) private transient volatile int transferIndex; // 调整大小和/或创建计数器单元格时使用的自旋锁(通过CAS锁定) private transient volatile int cellsBusy; //计数器数组。非空时,大小是2的幂 private transient volatile CounterCell[] counterCells; // views private transient KeySetView<K, V> keySet; private transient ValuesView<K, V> values; private transient EntrySetView<K, V> entrySet; /* ---------------- Public operations -------------- */ public ConcurrentHashMap(){ } public ConcurrentHashMap(int initialCapacity){ if(initialCapacity < 0) throw new IllegalArgumentException(); int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); this.sizeCtl = cap; } // 基于已有map构造map public ConcurrentHashMap(Map<? extends K, ? extends V> m){ this.sizeCtl = DEFAULT_CAPACITY; putAll(m); } public ConcurrentHashMap(int initialCapacity, float loadFactor){ this(initialCapacity, loadFactor, 1); } public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel){ if(!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if(initialCapacity < concurrencyLevel) // Use at least as many bins initialCapacity = concurrencyLevel; // as estimated threads long size = (long) (1.0 + (long) initialCapacity / loadFactor); int cap = (size >= (long) MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int) size); this.sizeCtl = cap; } public int size(){ long n = sumCount(); return ((n < 0L) ? 0 : (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) n); } public boolean isEmpty(){ return sumCount() <= 0L; // ignore transient negative values } public V get(Object key){ Node<K, V>[] tab; Node<K, V> e, p; int n, eh; K ek; int h = spread(key.hashCode()); if((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null){ if((eh = e.hash) == h){ if((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; }else if(eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if(e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; } public boolean containsKey(Object key){ return get(key) != null; } public boolean containsValue(Object value){ if(value == null) throw new NullPointerException(); Node<K, V>[] t; if((t = table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ V v; if((v = p.val) == value || (v != null && value.equals(v))) return true; } } return false; } public V put(K key, V value){ return putVal(key, value, false); } final V putVal(K key, V value, boolean onlyIfAbsent){ if(key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for(Node<K, V>[] tab = table; ; ){ Node<K, V> f; int n, i, fh; if(tab == null || (n = tab.length) == 0) tab = initTable(); else if((f = tabAt(tab, i = (n - 1) & hash)) == null){ if(casTabAt(tab, i, null, new Node<K, V>(hash, key, value, null))) break; // no lock when adding to empty bin }else if((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else{ V oldVal = null; synchronized (f) { // 加锁 if(tabAt(tab, i) == f){ if(fh >= 0){ binCount = 1; for(Node<K, V> e = f; ; ++binCount){ K ek; if(e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))){ oldVal = e.val; if(!onlyIfAbsent) e.val = value; break; } Node<K, V> pred = e; if((e = e.next) == null){ pred.next = new Node<K, V>(hash, key, value, null); break; } } }else if(f instanceof TreeBin){ Node<K, V> p; binCount = 2; if((p = ((TreeBin<K, V>) f).putTreeVal(hash, key, value)) != null){ oldVal = p.val; if(!onlyIfAbsent) p.val = value; } } } } if(binCount != 0){ if(binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if(oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; } public void putAll(Map<? extends K, ? extends V> m){ tryPresize(m.size()); for(Map.Entry<? extends K, ? extends V> e : m.entrySet()){ putVal(e.getKey(), e.getValue(), false); } } public V remove(Object key){ return replaceNode(key, null, null); } final V replaceNode(Object key, V value, Object cv){ int hash = spread(key.hashCode()); for(Node<K, V>[] tab = table; ; ){ Node<K, V> f; int n, i, fh; if(tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) break; else if((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else{ V oldVal = null; boolean validated = false; synchronized (f) { if(tabAt(tab, i) == f){ if(fh >= 0){ validated = true; for(Node<K, V> e = f, pred = null; ; ){ K ek; if(e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))){ V ev = e.val; if(cv == null || cv == ev || (ev != null && cv.equals(ev))){ oldVal = ev; if(value != null) e.val = value; else if(pred != null) pred.next = e.next; else setTabAt(tab, i, e.next); } break; } pred = e; if((e = e.next) == null) break; } }else if(f instanceof TreeBin){ validated = true; TreeBin<K, V> t = (TreeBin<K, V>) f; TreeNode<K, V> r, p; if((r = t.root) != null && (p = r.findTreeNode(hash, key, null)) != null){ V pv = p.val; if(cv == null || cv == pv || (pv != null && cv.equals(pv))){ oldVal = pv; if(value != null) p.val = value; else if(t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } } if(validated){ if(oldVal != null){ if(value == null) addCount(-1L, -1); return oldVal; } break; } } } return null; } public void clear(){ long delta = 0L; // negative number of deletions int i = 0; Node<K, V>[] tab = table; while (tab != null && i < tab.length) { int fh; Node<K, V> f = tabAt(tab, i); if(f == null) ++i; else if((fh = f.hash) == MOVED){ tab = helpTransfer(tab, f); i = 0; // restart }else{ synchronized (f) { if(tabAt(tab, i) == f){ Node<K, V> p = (fh >= 0 ? f : (f instanceof TreeBin) ? ((TreeBin<K, V>) f).first : null); while (p != null) { --delta; p = p.next; } setTabAt(tab, i++, null); } } } } if(delta != 0L) addCount(delta, -1); } public KeySetView<K, V> keySet(){ KeySetView<K, V> ks; return (ks = keySet) != null ? ks : (keySet = new KeySetView<K, V>(this, null)); } public Collection<V> values(){ ValuesView<K, V> vs; return (vs = values) != null ? vs : (values = new ValuesView<K, V>(this)); } public Set<Map.Entry<K, V>> entrySet(){ EntrySetView<K, V> es; return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K, V>(this)); } public int hashCode(){ int h = 0; Node<K, V>[] t; if((t = table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ h += p.key.hashCode() ^ p.val.hashCode(); } } return h; } public String toString(){ Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f); StringBuilder sb = new StringBuilder(); sb.append('{'); Node<K, V> p; if((p = it.advance()) != null){ for(; ; ){ K k = p.key; V v = p.val; sb.append(k == this ? "(this Map)" : k); sb.append('='); sb.append(v == this ? "(this Map)" : v); if((p = it.advance()) == null) break; sb.append(',').append(' '); } } return sb.append('}').toString(); } public boolean equals(Object o){ if(o != this){ if(!(o instanceof Map)) return false; Map<?, ?> m = (Map<?, ?>) o; Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; Traverser<K, V> it = new Traverser<K, V>(t, f, 0, f); for(Node<K, V> p; (p = it.advance()) != null; ){ V val = p.val; Object v = m.get(p.key); if(v == null || (v != val && !v.equals(val))) return false; } for(Map.Entry<?, ?> e : m.entrySet()){ Object mk, mv, v; if((mk = e.getKey()) == null || (mv = e.getValue()) == null || (v = get(mk)) == null || (mv != v && !mv.equals(v))) return false; } } return true; } // 分段锁 static class Segment<K, V> extends ReentrantLock implements Serializable { private static final long serialVersionUID = 2249069246763182397L; final float loadFactor; Segment(float lf){ this.loadFactor = lf; } } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // For serialization compatibility // Emulate segment calculation from previous version of this class int sshift = 0; int ssize = 1; while (ssize < DEFAULT_CONCURRENCY_LEVEL) { ++sshift; ssize <<= 1; } int segmentShift = 32 - sshift; int segmentMask = ssize - 1; @SuppressWarnings("unchecked") Segment<K, V>[] segments = (Segment<K, V>[]) new Segment<?, ?>[DEFAULT_CONCURRENCY_LEVEL]; for(int i = 0; i < segments.length; ++i){ segments[i] = new Segment<K, V>(LOAD_FACTOR); } s.putFields().put("segments", segments); s.putFields().put("segmentShift", segmentShift); s.putFields().put("segmentMask", segmentMask); s.writeFields(); Node<K, V>[] t; if((t = table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ s.writeObject(p.key); s.writeObject(p.val); } } s.writeObject(null); s.writeObject(null); segments = null; // throw away } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException{ /* * To improve performance in typical cases, we create nodes * while reading, then place in table once size is known. * However, we must also validate uniqueness and deal with * overpopulated bins while doing so, which requires * specialized versions of putVal mechanics. */ sizeCtl = -1; // force exclusion for table construction s.defaultReadObject(); long size = 0L; Node<K, V> p = null; for(; ; ){ @SuppressWarnings("unchecked") K k = (K) s.readObject(); @SuppressWarnings("unchecked") V v = (V) s.readObject(); if(k != null && v != null){ p = new Node<K, V>(spread(k.hashCode()), k, v, p); ++size; }else break; } if(size == 0L) sizeCtl = 0; else{ int n; if(size >= (long) (MAXIMUM_CAPACITY >>> 1)) n = MAXIMUM_CAPACITY; else{ int sz = (int) size; n = tableSizeFor(sz + (sz >>> 1) + 1); } @SuppressWarnings("unchecked") Node<K, V>[] tab = (Node<K, V>[]) new Node<?, ?>[n]; int mask = n - 1; long added = 0L; while (p != null) { boolean insertAtFront; Node<K, V> next = p.next, first; int h = p.hash, j = h & mask; if((first = tabAt(tab, j)) == null) insertAtFront = true; else{ K k = p.key; if(first.hash < 0){ TreeBin<K, V> t = (TreeBin<K, V>) first; if(t.putTreeVal(h, k, p.val) == null) ++added; insertAtFront = false; }else{ int binCount = 0; insertAtFront = true; Node<K, V> q; K qk; for(q = first; q != null; q = q.next){ if(q.hash == h && ((qk = q.key) == k || (qk != null && k.equals(qk)))){ insertAtFront = false; break; } ++binCount; } if(insertAtFront && binCount >= TREEIFY_THRESHOLD){ insertAtFront = false; ++added; p.next = first; TreeNode<K, V> hd = null, tl = null; for(q = p; q != null; q = q.next){ TreeNode<K, V> t = new TreeNode<K, V> (q.hash, q.key, q.val, null, null); if((t.prev = tl) == null) hd = t; else tl.next = t; tl = t; } setTabAt(tab, j, new TreeBin<K, V>(hd)); } } } if(insertAtFront){ ++added; p.next = first; setTabAt(tab, j, p); } p = next; } table = tab; sizeCtl = n - (n >>> 2); baseCount = added; } } // ConcurrentMap methods 并发方法 public V putIfAbsent(K key, V value){ return putVal(key, value, true); } public boolean remove(Object key, Object value){ if(key == null) throw new NullPointerException(); return value != null && replaceNode(key, null, value) != null; } public boolean replace(K key, V oldValue, V newValue){ if(key == null || oldValue == null || newValue == null) throw new NullPointerException(); return replaceNode(key, newValue, oldValue) != null; } public V replace(K key, V value){ if(key == null || value == null) throw new NullPointerException(); return replaceNode(key, value, null); } // Overrides of JDK8+ Map extension method defaults public V getOrDefault(Object key, V defaultValue){ V v; return (v = get(key)) == null ? defaultValue : v; } public void forEach(BiConsumer<? super K, ? super V> action){ if(action == null) throw new NullPointerException(); Node<K, V>[] t; if((t = table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ action.accept(p.key, p.val); } } } public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function){ if(function == null) throw new NullPointerException(); Node<K, V>[] t; if((t = table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ V oldValue = p.val; for(K key = p.key; ; ){ V newValue = function.apply(key, oldValue); if(newValue == null) throw new NullPointerException(); if(replaceNode(key, newValue, oldValue) != null || (oldValue = get(key)) == null) break; } } } } public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction){ if(key == null || mappingFunction == null) throw new NullPointerException(); int h = spread(key.hashCode()); V val = null; int binCount = 0; for(Node<K, V>[] tab = table; ; ){ Node<K, V> f; int n, i, fh; if(tab == null || (n = tab.length) == 0) tab = initTable(); else if((f = tabAt(tab, i = (n - 1) & h)) == null){ Node<K, V> r = new ReservationNode<K, V>(); synchronized (r) { if(casTabAt(tab, i, null, r)){ binCount = 1; Node<K, V> node = null; try { if((val = mappingFunction.apply(key)) != null) node = new Node<K, V>(h, key, val, null); } finally { setTabAt(tab, i, node); } } } if(binCount != 0) break; }else if((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else{ boolean added = false; synchronized (f) { if(tabAt(tab, i) == f){ if(fh >= 0){ binCount = 1; for(Node<K, V> e = f; ; ++binCount){ K ek; V ev; if(e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))){ val = e.val; break; } Node<K, V> pred = e; if((e = e.next) == null){ if((val = mappingFunction.apply(key)) != null){ added = true; pred.next = new Node<K, V>(h, key, val, null); } break; } } }else if(f instanceof TreeBin){ binCount = 2; TreeBin<K, V> t = (TreeBin<K, V>) f; TreeNode<K, V> r, p; if((r = t.root) != null && (p = r.findTreeNode(h, key, null)) != null) val = p.val; else if((val = mappingFunction.apply(key)) != null){ added = true; t.putTreeVal(h, key, val); } } } } if(binCount != 0){ if(binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if(!added) return val; break; } } } if(val != null) addCount(1L, binCount); return val; } public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction){ if(key == null || remappingFunction == null) throw new NullPointerException(); int h = spread(key.hashCode()); V val = null; int delta = 0; int binCount = 0; for(Node<K, V>[] tab = table; ; ){ Node<K, V> f; int n, i, fh; if(tab == null || (n = tab.length) == 0) tab = initTable(); else if((f = tabAt(tab, i = (n - 1) & h)) == null) break; else if((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else{ synchronized (f) { if(tabAt(tab, i) == f){ if(fh >= 0){ binCount = 1; for(Node<K, V> e = f, pred = null; ; ++binCount){ K ek; if(e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))){ val = remappingFunction.apply(key, e.val); if(val != null) e.val = val; else{ delta = -1; Node<K, V> en = e.next; if(pred != null) pred.next = en; else setTabAt(tab, i, en); } break; } pred = e; if((e = e.next) == null) break; } }else if(f instanceof TreeBin){ binCount = 2; TreeBin<K, V> t = (TreeBin<K, V>) f; TreeNode<K, V> r, p; if((r = t.root) != null && (p = r.findTreeNode(h, key, null)) != null){ val = remappingFunction.apply(key, p.val); if(val != null) p.val = val; else{ delta = -1; if(t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } } if(binCount != 0) break; } } if(delta != 0) addCount((long) delta, binCount); return val; } public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction){ if(key == null || remappingFunction == null) throw new NullPointerException(); int h = spread(key.hashCode()); V val = null; int delta = 0; int binCount = 0; for(Node<K, V>[] tab = table; ; ){ Node<K, V> f; int n, i, fh; if(tab == null || (n = tab.length) == 0) tab = initTable(); else if((f = tabAt(tab, i = (n - 1) & h)) == null){ Node<K, V> r = new ReservationNode<K, V>(); synchronized (r) { if(casTabAt(tab, i, null, r)){ binCount = 1; Node<K, V> node = null; try { if((val = remappingFunction.apply(key, null)) != null){ delta = 1; node = new Node<K, V>(h, key, val, null); } } finally { setTabAt(tab, i, node); } } } if(binCount != 0) break; }else if((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else{ synchronized (f) { if(tabAt(tab, i) == f){ if(fh >= 0){ binCount = 1; for(Node<K, V> e = f, pred = null; ; ++binCount){ K ek; if(e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))){ val = remappingFunction.apply(key, e.val); if(val != null) e.val = val; else{ delta = -1; Node<K, V> en = e.next; if(pred != null) pred.next = en; else setTabAt(tab, i, en); } break; } pred = e; if((e = e.next) == null){ val = remappingFunction.apply(key, null); if(val != null){ delta = 1; pred.next = new Node<K, V>(h, key, val, null); } break; } } }else if(f instanceof TreeBin){ binCount = 1; TreeBin<K, V> t = (TreeBin<K, V>) f; TreeNode<K, V> r, p; if((r = t.root) != null) p = r.findTreeNode(h, key, null); else p = null; V pv = (p == null) ? null : p.val; val = remappingFunction.apply(key, pv); if(val != null){ if(p != null) p.val = val; else{ delta = 1; t.putTreeVal(h, key, val); } }else if(p != null){ delta = -1; if(t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } if(binCount != 0){ if(binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); break; } } } if(delta != 0) addCount((long) delta, binCount); return val; } public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction){ if(key == null || value == null || remappingFunction == null) throw new NullPointerException(); int h = spread(key.hashCode()); V val = null; int delta = 0; int binCount = 0; for(Node<K, V>[] tab = table; ; ){ Node<K, V> f; int n, i, fh; if(tab == null || (n = tab.length) == 0) tab = initTable(); else if((f = tabAt(tab, i = (n - 1) & h)) == null){ if(casTabAt(tab, i, null, new Node<K, V>(h, key, value, null))){ delta = 1; val = value; break; } }else if((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else{ synchronized (f) { if(tabAt(tab, i) == f){ if(fh >= 0){ binCount = 1; for(Node<K, V> e = f, pred = null; ; ++binCount){ K ek; if(e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))){ val = remappingFunction.apply(e.val, value); if(val != null) e.val = val; else{ delta = -1; Node<K, V> en = e.next; if(pred != null) pred.next = en; else setTabAt(tab, i, en); } break; } pred = e; if((e = e.next) == null){ delta = 1; val = value; pred.next = new Node<K, V>(h, key, val, null); break; } } }else if(f instanceof TreeBin){ binCount = 2; TreeBin<K, V> t = (TreeBin<K, V>) f; TreeNode<K, V> r = t.root; TreeNode<K, V> p = (r == null) ? null : r.findTreeNode(h, key, null); val = (p == null) ? value : remappingFunction.apply(p.val, value); if(val != null){ if(p != null) p.val = val; else{ delta = 1; t.putTreeVal(h, key, val); } }else if(p != null){ delta = -1; if(t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } } if(binCount != 0){ if(binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); break; } } } if(delta != 0) addCount((long) delta, binCount); return val; } // Hashtable legacy methods public boolean contains(Object value){ return containsValue(value); } public Enumeration<K> keys(){ Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; return new KeyIterator<K, V>(t, f, 0, f, this); } public Enumeration<V> elements(){ Node<K, V>[] t; int f = (t = table) == null ? 0 : t.length; return new ValueIterator<K, V>(t, f, 0, f, this); } // ConcurrentHashMap-only methods public long mappingCount(){ long n = sumCount(); return (n < 0L) ? 0L : n; // ignore transient negative values } public static <K> KeySetView<K, Boolean> newKeySet(){ return new KeySetView<K, Boolean> (new ConcurrentHashMap<K, Boolean>(), Boolean.TRUE); } public static <K> KeySetView<K, Boolean> newKeySet(int initialCapacity){ return new KeySetView<K, Boolean> (new ConcurrentHashMap<K, Boolean>(initialCapacity), Boolean.TRUE); } public KeySetView<K, V> keySet(V mappedValue){ if(mappedValue == null) throw new NullPointerException(); return new KeySetView<K, V>(this, mappedValue); } /* ---------------- Special Nodes -------------- */ static final class ForwardingNode<K, V> extends Node<K, V> { final Node<K, V>[] nextTable; ForwardingNode(Node<K, V>[] tab){ super(MOVED, null, null, null); this.nextTable = tab; } Node<K, V> find(int h, Object k){ // loop to avoid arbitrarily deep recursion on forwarding nodes outer: for(Node<K, V>[] tab = nextTable; ; ){ Node<K, V> e; int n; if(k == null || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null) return null; for(; ; ){ int eh; K ek; if((eh = e.hash) == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; if(eh < 0){ if(e instanceof ForwardingNode){ tab = ((ForwardingNode<K, V>) e).nextTable; continue outer; }else return e.find(h, k); } if((e = e.next) == null) return null; } } } } static final class ReservationNode<K, V> extends Node<K, V> { ReservationNode(){ super(RESERVED, null, null, null); } Node<K, V> find(int h, Object k){ return null; } } static final int resizeStamp(int n){ return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); } private final Node<K, V>[] initTable(){ Node<K, V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin else if(U.compareAndSwapInt(this, SIZECTL, sc, -1)){ try { if((tab = table) == null || tab.length == 0){ int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; } private final void addCount(long x, int check){ CounterCell[] as; long b, s; if((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)){ CounterCell a; long v; int m; boolean uncontended = true; if(as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))){ fullAddCount(x, uncontended); return; } if(check <= 1) return; s = sumCount(); } if(check >= 0){ Node<K, V>[] tab, nt; int n, sc; while (s >= (long) (sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if(sc < 0){ if((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if(U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); }else if(U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } } /** * Helps transfer if a resize is in progress. */ final Node<K, V>[] helpTransfer(Node<K, V>[] tab, Node<K, V> f){ Node<K, V>[] nextTab; int sc; if(tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode<K, V>) f).nextTable) != null){ int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) break; if(U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)){ transfer(tab, nextTab); break; } } return nextTab; } return table; } private final void tryPresize(int size){ int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(size + (size >>> 1) + 1); int sc; while ((sc = sizeCtl) >= 0) { Node<K, V>[] tab = table; int n; if(tab == null || (n = tab.length) == 0){ n = (sc > c) ? sc : c; if(U.compareAndSwapInt(this, SIZECTL, sc, -1)){ try { if(table == tab){ @SuppressWarnings("unchecked") Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n]; table = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } } }else if(c <= sc || n >= MAXIMUM_CAPACITY) break; else if(tab == table){ int rs = resizeStamp(n); if(sc < 0){ Node<K, V>[] nt; if((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if(U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); }else if(U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); } } } private final void transfer(Node<K, V>[] tab, Node<K, V>[] nextTab){ int n = tab.length, stride; if((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range if(nextTab == null){ // initiating try { @SuppressWarnings("unchecked") Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; ForwardingNode<K, V> fwd = new ForwardingNode<K, V>(nextTab); boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for(int i = 0, bound = 0; ; ){ Node<K, V> f; int fh; while (advance) { int nextIndex, nextBound; if(--i >= bound || finishing) advance = false; else if((nextIndex = transferIndex) <= 0){ i = -1; advance = false; }else if(U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))){ bound = nextBound; i = nextIndex - 1; advance = false; } } if(i < 0 || i >= n || i + n >= nextn){ int sc; if(finishing){ nextTable = null; table = nextTab; sizeCtl = (n << 1) - (n >>> 1); return; } if(U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)){ if((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; i = n; // recheck before commit } }else if((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd); else if((fh = f.hash) == MOVED) advance = true; // already processed else{ synchronized (f) { if(tabAt(tab, i) == f){ Node<K, V> ln, hn; if(fh >= 0){ int runBit = fh & n; Node<K, V> lastRun = f; for(Node<K, V> p = f.next; p != null; p = p.next){ int b = p.hash & n; if(b != runBit){ runBit = b; lastRun = p; } } if(runBit == 0){ ln = lastRun; hn = null; }else{ hn = lastRun; ln = null; } for(Node<K, V> p = f; p != lastRun; p = p.next){ int ph = p.hash; K pk = p.key; V pv = p.val; if((ph & n) == 0) ln = new Node<K, V>(ph, pk, pv, ln); else hn = new Node<K, V>(ph, pk, pv, hn); } setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; }else if(f instanceof TreeBin){ TreeBin<K, V> t = (TreeBin<K, V>) f; TreeNode<K, V> lo = null, loTail = null; TreeNode<K, V> hi = null, hiTail = null; int lc = 0, hc = 0; for(Node<K, V> e = t.first; e != null; e = e.next){ int h = e.hash; TreeNode<K, V> p = new TreeNode<K, V> (h, e.key, e.val, null, null); if((h & n) == 0){ if((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; }else{ if((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<K, V>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<K, V>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } } @sun.misc.Contended static final class CounterCell { volatile long value; CounterCell(long x){ value = x; } } final long sumCount(){ CounterCell[] as = counterCells; CounterCell a; long sum = baseCount; if(as != null){ for(int i = 0; i < as.length; ++i){ if((a = as[i]) != null) sum += a.value; } } return sum; } // See LongAdder version for explanation private final void fullAddCount(long x, boolean wasUncontended){ int h; if((h = ThreadLocalRandom.getProbe()) == 0){ ThreadLocalRandom.localInit(); // force initialization h = ThreadLocalRandom.getProbe(); wasUncontended = true; } boolean collide = false; // True if last slot nonempty for(; ; ){ CounterCell[] as; CounterCell a; int n; long v; if((as = counterCells) != null && (n = as.length) > 0){ if((a = as[(n - 1) & h]) == null){ if(cellsBusy == 0){ // Try to attach new Cell CounterCell r = new CounterCell(x); // Optimistic create if(cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)){ boolean created = false; try { // Recheck under lock CounterCell[] rs; int m, j; if((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null){ rs[j] = r; created = true; } } finally { cellsBusy = 0; } if(created) break; continue; // Slot is now non-empty } } collide = false; }else if(!wasUncontended) // CAS already known to fail wasUncontended = true; // Continue after rehash else if(U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) break; else if(counterCells != as || n >= NCPU) collide = false; // At max size or stale else if(!collide) collide = true; else if(cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)){ try { if(counterCells == as){// Expand table unless stale CounterCell[] rs = new CounterCell[n << 1]; for(int i = 0; i < n; ++i){ rs[i] = as[i]; } counterCells = rs; } } finally { cellsBusy = 0; } collide = false; continue; // Retry with expanded table } h = ThreadLocalRandom.advanceProbe(h); }else if(cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)){ boolean init = false; try { // Initialize table if(counterCells == as){ CounterCell[] rs = new CounterCell[2]; rs[h & 1] = new CounterCell(x); counterCells = rs; init = true; } } finally { cellsBusy = 0; } if(init) break; }else if(U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) break; // Fall back on using base } } private final void treeifyBin(Node<K, V>[] tab, int index){ Node<K, V> b; int n, sc; if(tab != null){ if((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if((b = tabAt(tab, index)) != null && b.hash >= 0){ synchronized (b) { if(tabAt(tab, index) == b){ TreeNode<K, V> hd = null, tl = null; for(Node<K, V> e = b; e != null; e = e.next){ TreeNode<K, V> p = new TreeNode<K, V>(e.hash, e.key, e.val, null, null); if((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<K, V>(hd)); } } } } } static <K, V> Node<K, V> untreeify(Node<K, V> b){ Node<K, V> hd = null, tl = null; for(Node<K, V> q = b; q != null; q = q.next){ Node<K, V> p = new Node<K, V>(q.hash, q.key, q.val, null); if(tl == null) hd = p; else tl.next = p; tl = p; } return hd; } //红黑树 static final class TreeNode<K, V> extends Node<K, V> { TreeNode<K, V> parent; // red-black tree links TreeNode<K, V> left; TreeNode<K, V> right; TreeNode<K, V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<K, V> next, TreeNode<K, V> parent){ super(hash, key, val, next); this.parent = parent; } Node<K, V> find(int h, Object k){ return findTreeNode(h, k, null); } /** * Returns the TreeNode (or null if not found) for the given key * starting at given root. */ final TreeNode<K, V> findTreeNode(int h, Object k, Class<?> kc){ if(k != null){ TreeNode<K, V> p = this; do { int ph, dir; K pk; TreeNode<K, V> q; TreeNode<K, V> pl = p.left, pr = p.right; if((ph = p.hash) > h) p = pl; else if(ph < h) p = pr; else if((pk = p.key) == k || (pk != null && k.equals(pk))) return p; else if(pl == null) p = pr; else if(pr == null) p = pl; else if((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if((q = pr.findTreeNode(h, k, kc)) != null) return q; else p = pl; } while (p != null); } return null; } } /* ---------------- TreeBins -------------- */ //封装Node,加锁的红黑树 static final class TreeBin<K, V> extends Node<K, V> { TreeNode<K, V> root; volatile TreeNode<K, V> first; volatile Thread waiter; volatile int lockState; // values for lockState static final int WRITER = 1; // set while holding write lock static final int WAITER = 2; // set when waiting for write lock static final int READER = 4; // increment value for setting read lock /** * Tie-breaking utility for ordering insertions when equal * hashCodes and non-comparable. We don't require a total * order, just a consistent insertion rule to maintain * equivalence across rebalancings. Tie-breaking further than * necessary simplifies testing a bit. */ static int tieBreakOrder(Object a, Object b){ int d; if(a == null || b == null || (d = a.getClass().getName(). compareTo(b.getClass().getName())) == 0) d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); return d; } /** * Creates bin with initial set of nodes headed by b. */ TreeBin(TreeNode<K, V> b){ super(TREEBIN, null, null, null); this.first = b; TreeNode<K, V> r = null; for(TreeNode<K, V> x = b, next; x != null; x = next){ next = (TreeNode<K, V>) x.next; x.left = x.right = null; if(r == null){ x.parent = null; x.red = false; r = x; }else{ K k = x.key; int h = x.hash; Class<?> kc = null; for(TreeNode<K, V> p = r; ; ){ int dir, ph; K pk = p.key; if((ph = p.hash) > h) dir = -1; else if(ph < h) dir = 1; else if((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K, V> xp = p; if((p = (dir <= 0) ? p.left : p.right) == null){ x.parent = xp; if(dir <= 0) xp.left = x; else xp.right = x; r = balanceInsertion(r, x); break; } } } } this.root = r; assert checkInvariants(root); } /** * Acquires write lock for tree restructuring. */ private final void lockRoot(){ if(!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) contendedLock(); // offload to separate method } /** * Releases write lock for tree restructuring. */ private final void unlockRoot(){ lockState = 0; } /** * Possibly blocks awaiting root lock. */ private final void contendedLock(){ boolean waiting = false; for(int s; ; ){ if(((s = lockState) & ~WAITER) == 0){ if(U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)){ if(waiting) waiter = null; return; } }else if((s & WAITER) == 0){ if(U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)){ waiting = true; waiter = Thread.currentThread(); } }else if(waiting) LockSupport.park(this); } } /** * Returns matching node or null if none. Tries to search * using tree comparisons from root, but continues linear * search when lock not available. */ final Node<K, V> find(int h, Object k){ if(k != null){ for(Node<K, V> e = first; e != null; ){ int s; K ek; if(((s = lockState) & (WAITER | WRITER)) != 0){ if(e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; e = e.next; }else if(U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)){ TreeNode<K, V> r, p; try { p = ((r = root) == null ? null : r.findTreeNode(h, k, null)); } finally { Thread w; if(U.getAndAddInt(this, LOCKSTATE, -READER) == (READER | WAITER) && (w = waiter) != null) LockSupport.unpark(w); } return p; } } } return null; } /** * Finds or adds a node. * * @return null if added */ final TreeNode<K, V> putTreeVal(int h, K k, V v){ Class<?> kc = null; boolean searched = false; for(TreeNode<K, V> p = root; ; ){ int dir, ph; K pk; if(p == null){ first = root = new TreeNode<K, V>(h, k, v, null, null); break; }else if((ph = p.hash) > h) dir = -1; else if(ph < h) dir = 1; else if((pk = p.key) == k || (pk != null && k.equals(pk))) return p; else if((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0){ if(!searched){ TreeNode<K, V> q, ch; searched = true; if(((ch = p.left) != null && (q = ch.findTreeNode(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.findTreeNode(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<K, V> xp = p; if((p = (dir <= 0) ? p.left : p.right) == null){ TreeNode<K, V> x, f = first; first = x = new TreeNode<K, V>(h, k, v, f, xp); if(f != null) f.prev = x; if(dir <= 0) xp.left = x; else xp.right = x; if(!xp.red) x.red = true; else{ lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); } } break; } } assert checkInvariants(root); return null; } /** * Removes the given node, that must be present before this * call. This is messier than typical red-black deletion code * because we cannot swap the contents of an interior node * with a leaf successor that is pinned by "next" pointers * that are accessible independently of lock. So instead we * swap the tree linkages. * * @return true if now too small, so should be untreeified */ final boolean removeTreeNode(TreeNode<K, V> p){ TreeNode<K, V> next = (TreeNode<K, V>) p.next; TreeNode<K, V> pred = p.prev; // unlink traversal pointers TreeNode<K, V> r, rl; if(pred == null) first = next; else pred.next = next; if(next != null) next.prev = pred; if(first == null){ root = null; return true; } if((r = root) == null || r.right == null || // too small (rl = r.left) == null || rl.left == null) return true; lockRoot(); try { TreeNode<K, V> replacement; TreeNode<K, V> pl = p.left; TreeNode<K, V> pr = p.right; if(pl != null && pr != null){ TreeNode<K, V> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K, V> sr = s.right; TreeNode<K, V> pp = p.parent; if(s == pr){ // p was s's direct parent p.parent = s; s.right = p; }else{ TreeNode<K, V> sp = s.parent; if((p.parent = sp) != null){ if(s == sp.left) sp.left = p; else sp.right = p; } if((s.right = pr) != null) pr.parent = s; } p.left = null; if((p.right = sr) != null) sr.parent = p; if((s.left = pl) != null) pl.parent = s; if((s.parent = pp) == null) r = s; else if(p == pp.left) pp.left = s; else pp.right = s; if(sr != null) replacement = sr; else replacement = p; }else if(pl != null) replacement = pl; else if(pr != null) replacement = pr; else replacement = p; if(replacement != p){ TreeNode<K, V> pp = replacement.parent = p.parent; if(pp == null) r = replacement; else if(p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } root = (p.red) ? r : balanceDeletion(r, replacement); if(p == replacement){ // detach pointers TreeNode<K, V> pp; if((pp = p.parent) != null){ if(p == pp.left) pp.left = null; else if(p == pp.right) pp.right = null; p.parent = null; } } } finally { unlockRoot(); } assert checkInvariants(root); return false; } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p){ TreeNode<K, V> r, pp, rl; if(p != null && (r = p.right) != null){ if((rl = p.right = r.left) != null) rl.parent = p; if((pp = r.parent = p.parent) == null) (root = r).red = false; else if(pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p){ TreeNode<K, V> l, pp, lr; if(p != null && (l = p.left) != null){ if((lr = p.left = l.right) != null) lr.parent = p; if((pp = l.parent = p.parent) == null) (root = l).red = false; else if(pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x){ x.red = true; for(TreeNode<K, V> xp, xpp, xppl, xppr; ; ){ if((xp = x.parent) == null){ x.red = false; return x; }else if(!xp.red || (xpp = xp.parent) == null) return root; if(xp == (xppl = xpp.left)){ if((xppr = xpp.right) != null && xppr.red){ xppr.red = false; xp.red = false; xpp.red = true; x = xpp; }else{ if(x == xp.right){ root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if(xp != null){ xp.red = false; if(xpp != null){ xpp.red = true; root = rotateRight(root, xpp); } } } }else{ if(xppl != null && xppl.red){ xppl.red = false; xp.red = false; xpp.red = true; x = xpp; }else{ if(x == xp.left){ root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if(xp != null){ xp.red = false; if(xpp != null){ xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root, TreeNode<K, V> x){ for(TreeNode<K, V> xp, xpl, xpr; ; ){ if(x == null || x == root) return root; else if((xp = x.parent) == null){ x.red = false; return x; }else if(x.red){ x.red = false; return root; }else if((xpl = xp.left) == x){ if((xpr = xp.right) != null && xpr.red){ xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if(xpr == null) x = xp; else{ TreeNode<K, V> sl = xpr.left, sr = xpr.right; if((sr == null || !sr.red) && (sl == null || !sl.red)){ xpr.red = true; x = xp; }else{ if(sr == null || !sr.red){ if(sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if(xpr != null){ xpr.red = (xp == null) ? false : xp.red; if((sr = xpr.right) != null) sr.red = false; } if(xp != null){ xp.red = false; root = rotateLeft(root, xp); } x = root; } } }else{ // symmetric if(xpl != null && xpl.red){ xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if(xpl == null) x = xp; else{ TreeNode<K, V> sl = xpl.left, sr = xpl.right; if((sl == null || !sl.red) && (sr == null || !sr.red)){ xpl.red = true; x = xp; }else{ if(sl == null || !sl.red){ if(sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if(xpl != null){ xpl.red = (xp == null) ? false : xp.red; if((sl = xpl.left) != null) sl.red = false; } if(xp != null){ xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <K, V> boolean checkInvariants(TreeNode<K, V> t){ TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K, V>) t.next; if(tb != null && tb.next != t) return false; if(tn != null && tn.prev != t) return false; if(tp != null && t != tp.left && t != tp.right) return false; if(tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if(tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if(t.red && tl != null && tl.red && tr != null && tr.red) return false; if(tl != null && !checkInvariants(tl)) return false; if(tr != null && !checkInvariants(tr)) return false; return true; } private static final sun.misc.Unsafe U; private static final long LOCKSTATE; static{ try { U = sun.misc.Unsafe.getUnsafe(); Class<?> k = TreeBin.class; LOCKSTATE = U.objectFieldOffset (k.getDeclaredField("lockState")); } catch (Exception e) { throw new Error(e); } } } /* ----------------Table Traversal -------------- */ static final class TableStack<K, V> { int length; int index; Node<K, V>[] tab; TableStack<K, V> next; } static class Traverser<K, V> { Node<K, V>[] tab; // current table; updated if resized Node<K, V> next; // the next entry to use TableStack<K, V> stack, spare; // to save/restore on ForwardingNodes int index; // index of bin to use next int baseIndex; // current index of initial table int baseLimit; // index bound for initial table final int baseSize; // initial table size Traverser(Node<K, V>[] tab, int size, int index, int limit){ this.tab = tab; this.baseSize = size; this.baseIndex = this.index = index; this.baseLimit = limit; this.next = null; } final Node<K, V> advance(){ Node<K, V> e; if((e = next) != null) e = e.next; for(; ; ){ Node<K, V>[] t; int i, n; // must use locals in checks if(e != null) return next = e; if(baseIndex >= baseLimit || (t = tab) == null || (n = t.length) <= (i = index) || i < 0) return next = null; if((e = tabAt(t, i)) != null && e.hash < 0){ if(e instanceof ForwardingNode){ tab = ((ForwardingNode<K, V>) e).nextTable; e = null; pushState(t, i, n); continue; }else if(e instanceof TreeBin) e = ((TreeBin<K, V>) e).first; else e = null; } if(stack != null) recoverState(n); else if((index = i + baseSize) >= n) index = ++baseIndex; // visit upper slots if present } } private void pushState(Node<K, V>[] t, int i, int n){ TableStack<K, V> s = spare; // reuse if possible if(s != null) spare = s.next; else s = new TableStack<K, V>(); s.tab = t; s.length = n; s.index = i; s.next = stack; stack = s; } private void recoverState(int n){ TableStack<K, V> s; int len; while ((s = stack) != null && (index += (len = s.length)) >= n) { n = len; index = s.index; tab = s.tab; s.tab = null; TableStack<K, V> next = s.next; s.next = spare; // save for reuse stack = next; spare = s; } if(s == null && (index += baseSize) >= n) index = ++baseIndex; } } // 迭代器**********************************************************// static class BaseIterator<K, V> extends Traverser<K, V> { final ConcurrentHashMap<K, V> map; Node<K, V> lastReturned; BaseIterator(Node<K, V>[] tab, int size, int index, int limit, ConcurrentHashMap<K, V> map){ super(tab, size, index, limit); this.map = map; advance(); } public final boolean hasNext(){ return next != null; } public final boolean hasMoreElements(){ return next != null; } public final void remove(){ Node<K, V> p; if((p = lastReturned) == null) throw new IllegalStateException(); lastReturned = null; map.replaceNode(p.key, null, null); } } static final class KeyIterator<K, V> extends BaseIterator<K, V> implements Iterator<K>, Enumeration<K> { KeyIterator(Node<K, V>[] tab, int index, int size, int limit, ConcurrentHashMap<K, V> map){ super(tab, index, size, limit, map); } public final K next(){ Node<K, V> p; if((p = next) == null) throw new NoSuchElementException(); K k = p.key; lastReturned = p; advance(); return k; } public final K nextElement(){ return next(); } } static final class ValueIterator<K, V> extends BaseIterator<K, V> implements Iterator<V>, Enumeration<V> { ValueIterator(Node<K, V>[] tab, int index, int size, int limit, ConcurrentHashMap<K, V> map){ super(tab, index, size, limit, map); } public final V next(){ Node<K, V> p; if((p = next) == null) throw new NoSuchElementException(); V v = p.val; lastReturned = p; advance(); return v; } public final V nextElement(){ return next(); } } static final class EntryIterator<K, V> extends BaseIterator<K, V> implements Iterator<Map.Entry<K, V>> { EntryIterator(Node<K, V>[] tab, int index, int size, int limit, ConcurrentHashMap<K, V> map){ super(tab, index, size, limit, map); } public final Map.Entry<K, V> next(){ Node<K, V> p; if((p = next) == null) throw new NoSuchElementException(); K k = p.key; V v = p.val; lastReturned = p; advance(); return new MapEntry<K, V>(k, v, map); } } static final class MapEntry<K, V> implements Map.Entry<K, V> { final K key; // non-null V val; // non-null final ConcurrentHashMap<K, V> map; MapEntry(K key, V val, ConcurrentHashMap<K, V> map){ this.key = key; this.val = val; this.map = map; } public K getKey(){ return key; } public V getValue(){ return val; } public int hashCode(){ return key.hashCode() ^ val.hashCode(); } public String toString(){ return key + "=" + val; } public boolean equals(Object o){ Object k, v; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>) o).getKey()) != null && (v = e.getValue()) != null && (k == key || k.equals(key)) && (v == val || v.equals(val))); } /** * Sets our entry's value and writes through to the map. The * value to return is somewhat arbitrary here. Since we do not * necessarily track asynchronous changes, the most recent * "previous" value could be different from what we return (or * could even have been removed, in which case the put will * re-establish). We do not and cannot guarantee more. */ public V setValue(V value){ if(value == null) throw new NullPointerException(); V v = val; val = value; map.put(key, value); return v; } } static final class KeySpliterator<K, V> extends Traverser<K, V> implements Spliterator<K> { long est; // size estimate KeySpliterator(Node<K, V>[] tab, int size, int index, int limit, long est){ super(tab, size, index, limit); this.est = est; } public Spliterator<K> trySplit(){ int i, f, h; return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : new KeySpliterator<K, V>(tab, baseSize, baseLimit = h, f, est >>>= 1); } public void forEachRemaining(Consumer<? super K> action){ if(action == null) throw new NullPointerException(); for(Node<K, V> p; (p = advance()) != null; ){ action.accept(p.key); } } public boolean tryAdvance(Consumer<? super K> action){ if(action == null) throw new NullPointerException(); Node<K, V> p; if((p = advance()) == null) return false; action.accept(p.key); return true; } public long estimateSize(){ return est; } public int characteristics(){ return Spliterator.DISTINCT | Spliterator.CONCURRENT | Spliterator.NONNULL; } } static final class ValueSpliterator<K, V> extends Traverser<K, V> implements Spliterator<V> { long est; // size estimate ValueSpliterator(Node<K, V>[] tab, int size, int index, int limit, long est){ super(tab, size, index, limit); this.est = est; } public Spliterator<V> trySplit(){ int i, f, h; return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : new ValueSpliterator<K, V>(tab, baseSize, baseLimit = h, f, est >>>= 1); } public void forEachRemaining(Consumer<? super V> action){ if(action == null) throw new NullPointerException(); for(Node<K, V> p; (p = advance()) != null; ){ action.accept(p.val); } } public boolean tryAdvance(Consumer<? super V> action){ if(action == null) throw new NullPointerException(); Node<K, V> p; if((p = advance()) == null) return false; action.accept(p.val); return true; } public long estimateSize(){ return est; } public int characteristics(){ return Spliterator.CONCURRENT | Spliterator.NONNULL; } } static final class EntrySpliterator<K, V> extends Traverser<K, V> implements Spliterator<Map.Entry<K, V>> { final ConcurrentHashMap<K, V> map; // To export MapEntry long est; // size estimate EntrySpliterator(Node<K, V>[] tab, int size, int index, int limit, long est, ConcurrentHashMap<K, V> map){ super(tab, size, index, limit); this.map = map; this.est = est; } public Spliterator<Map.Entry<K, V>> trySplit(){ int i, f, h; return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null : new EntrySpliterator<K, V>(tab, baseSize, baseLimit = h, f, est >>>= 1, map); } public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action){ if(action == null) throw new NullPointerException(); for(Node<K, V> p; (p = advance()) != null; ){ action.accept(new MapEntry<K, V>(p.key, p.val, map)); } } public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action){ if(action == null) throw new NullPointerException(); Node<K, V> p; if((p = advance()) == null) return false; action.accept(new MapEntry<K, V>(p.key, p.val, map)); return true; } public long estimateSize(){ return est; } public int characteristics(){ return Spliterator.DISTINCT | Spliterator.CONCURRENT | Spliterator.NONNULL; } } // Parallel bulk operations,并发操作 final int batchFor(long b){ long n; if(b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b) return 0; int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4 return (b <= 0L || (n /= b) >= sp) ? sp : (int) n; } public void forEach(long parallelismThreshold, BiConsumer<? super K, ? super V> action){ if(action == null) throw new NullPointerException(); new ForEachMappingTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, action).invoke(); } public <U> void forEach(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action){ if(transformer == null || action == null) throw new NullPointerException(); new ForEachTransformedMappingTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, transformer, action).invoke(); } public <U> U search(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> searchFunction){ if(searchFunction == null) throw new NullPointerException(); return new SearchMappingsTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, searchFunction, new AtomicReference<U>()).invoke(); } public <U> U reduce(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceMappingsTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, reducer).invoke(); } public double reduceToDouble(long parallelismThreshold, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceMappingsToDoubleTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public long reduceToLong(long parallelismThreshold, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceMappingsToLongTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public int reduceToInt(long parallelismThreshold, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceMappingsToIntTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public void forEachKey(long parallelismThreshold, Consumer<? super K> action){ if(action == null) throw new NullPointerException(); new ForEachKeyTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, action).invoke(); } public <U> void forEachKey(long parallelismThreshold, Function<? super K, ? extends U> transformer, Consumer<? super U> action){ if(transformer == null || action == null) throw new NullPointerException(); new ForEachTransformedKeyTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, transformer, action).invoke(); } public <U> U searchKeys(long parallelismThreshold, Function<? super K, ? extends U> searchFunction){ if(searchFunction == null) throw new NullPointerException(); return new SearchKeysTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, searchFunction, new AtomicReference<U>()).invoke(); } public K reduceKeys(long parallelismThreshold, BiFunction<? super K, ? super K, ? extends K> reducer){ if(reducer == null) throw new NullPointerException(); return new ReduceKeysTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, reducer).invoke(); } public <U> U reduceKeys(long parallelismThreshold, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceKeysTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, reducer).invoke(); } public double reduceKeysToDouble(long parallelismThreshold, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceKeysToDoubleTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public long reduceKeysToLong(long parallelismThreshold, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceKeysToLongTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public int reduceKeysToInt(long parallelismThreshold, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceKeysToIntTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public void forEachValue(long parallelismThreshold, Consumer<? super V> action){ if(action == null) throw new NullPointerException(); new ForEachValueTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, action).invoke(); } public <U> void forEachValue(long parallelismThreshold, Function<? super V, ? extends U> transformer, Consumer<? super U> action){ if(transformer == null || action == null) throw new NullPointerException(); new ForEachTransformedValueTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, transformer, action).invoke(); } public <U> U searchValues(long parallelismThreshold, Function<? super V, ? extends U> searchFunction){ if(searchFunction == null) throw new NullPointerException(); return new SearchValuesTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, searchFunction, new AtomicReference<U>()).invoke(); } public V reduceValues(long parallelismThreshold, BiFunction<? super V, ? super V, ? extends V> reducer){ if(reducer == null) throw new NullPointerException(); return new ReduceValuesTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, reducer).invoke(); } public <U> U reduceValues(long parallelismThreshold, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceValuesTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, reducer).invoke(); } /** * Returns the result of accumulating the given transformation * of all values using the given reducer to combine values, * and the given basis as an identity value. * * @param parallelismThreshold the (estimated) number of elements * needed for this operation to be executed in parallel * @param transformer a function returning the transformation * for an element * @param basis the identity (initial default value) for the reduction * @param reducer a commutative associative combining function * @return the result of accumulating the given transformation * of all values * @since 1.8 */ public double reduceValuesToDouble(long parallelismThreshold, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceValuesToDoubleTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public long reduceValuesToLong(long parallelismThreshold, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceValuesToLongTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public int reduceValuesToInt(long parallelismThreshold, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceValuesToIntTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public void forEachEntry(long parallelismThreshold, Consumer<? super Map.Entry<K, V>> action){ if(action == null) throw new NullPointerException(); new ForEachEntryTask<K, V>(null, batchFor(parallelismThreshold), 0, 0, table, action).invoke(); } public <U> void forEachEntry(long parallelismThreshold, Function<Map.Entry<K, V>, ? extends U> transformer, Consumer<? super U> action){ if(transformer == null || action == null) throw new NullPointerException(); new ForEachTransformedEntryTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, transformer, action).invoke(); } public <U> U searchEntries(long parallelismThreshold, Function<Map.Entry<K, V>, ? extends U> searchFunction){ if(searchFunction == null) throw new NullPointerException(); return new SearchEntriesTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, searchFunction, new AtomicReference<U>()).invoke(); } public Map.Entry<K, V> reduceEntries(long parallelismThreshold, BiFunction<Map.Entry<K, V>, Map.Entry<K, V>, ? extends Map.Entry<K, V>> reducer){ if(reducer == null) throw new NullPointerException(); return new ReduceEntriesTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, reducer).invoke(); } public <U> U reduceEntries(long parallelismThreshold, Function<Map.Entry<K, V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceEntriesTask<K, V, U> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, reducer).invoke(); } public double reduceEntriesToDouble(long parallelismThreshold, ToDoubleFunction<Map.Entry<K, V>> transformer, double basis, DoubleBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceEntriesToDoubleTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public long reduceEntriesToLong(long parallelismThreshold, ToLongFunction<Map.Entry<K, V>> transformer, long basis, LongBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceEntriesToLongTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } public int reduceEntriesToInt(long parallelismThreshold, ToIntFunction<Map.Entry<K, V>> transformer, int basis, IntBinaryOperator reducer){ if(transformer == null || reducer == null) throw new NullPointerException(); return new MapReduceEntriesToIntTask<K, V> (null, batchFor(parallelismThreshold), 0, 0, table, null, transformer, basis, reducer).invoke(); } // 用于视图的内部静态类 abstract static class CollectionView<K, V, E> implements Collection<E>, java.io.Serializable { private static final long serialVersionUID = 7249069246763182397L; final ConcurrentHashMap<K, V> map; CollectionView(ConcurrentHashMap<K, V> map){ this.map = map; } /** * Returns the map backing this view. * * @return the map backing this view */ public ConcurrentHashMap<K, V> getMap(){ return map; } /** * Removes all of the elements from this view, by removing all * the mappings from the map backing this view. */ public final void clear(){ map.clear(); } public final int size(){ return map.size(); } public final boolean isEmpty(){ return map.isEmpty(); } // implementations below rely on concrete classes supplying these // abstract methods /** * Returns an iterator over the elements in this collection. * * <p>The returned iterator is * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. * * @return an iterator over the elements in this collection */ public abstract Iterator<E> iterator(); public abstract boolean contains(Object o); public abstract boolean remove(Object o); private static final String oomeMsg = "Required array size too large"; public final Object[] toArray(){ long sz = map.mappingCount(); if(sz > MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); int n = (int) sz; Object[] r = new Object[n]; int i = 0; for(E e : this){ if(i == n){ if(n >= MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); if(n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) n = MAX_ARRAY_SIZE; else n += (n >>> 1) + 1; r = Arrays.copyOf(r, n); } r[i++] = e; } return (i == n) ? r : Arrays.copyOf(r, i); } @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a){ long sz = map.mappingCount(); if(sz > MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); int m = (int) sz; T[] r = (a.length >= m) ? a : (T[]) java.lang.reflect.Array .newInstance(a.getClass().getComponentType(), m); int n = r.length; int i = 0; for(E e : this){ if(i == n){ if(n >= MAX_ARRAY_SIZE) throw new OutOfMemoryError(oomeMsg); if(n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1) n = MAX_ARRAY_SIZE; else n += (n >>> 1) + 1; r = Arrays.copyOf(r, n); } r[i++] = (T) e; } if(a == r && i < n){ r[i] = null; // null-terminate return r; } return (i == n) ? r : Arrays.copyOf(r, i); } /** * Returns a string representation of this collection. * The string representation consists of the string representations * of the collection's elements in the order they are returned by * its iterator, enclosed in square brackets ({@code "[]"}). * Adjacent elements are separated by the characters {@code ", "} * (comma and space). Elements are converted to strings as by * {@link String#valueOf(Object)}. * * @return a string representation of this collection */ public final String toString(){ StringBuilder sb = new StringBuilder(); sb.append('['); Iterator<E> it = iterator(); if(it.hasNext()){ for(; ; ){ Object e = it.next(); sb.append(e == this ? "(this Collection)" : e); if(!it.hasNext()) break; sb.append(',').append(' '); } } return sb.append(']').toString(); } public final boolean containsAll(Collection<?> c){ if(c != this){ for(Object e : c){ if(e == null || !contains(e)) return false; } } return true; } public final boolean removeAll(Collection<?> c){ if(c == null) throw new NullPointerException(); boolean modified = false; for(Iterator<E> it = iterator(); it.hasNext(); ){ if(c.contains(it.next())){ it.remove(); modified = true; } } return modified; } public final boolean retainAll(Collection<?> c){ if(c == null) throw new NullPointerException(); boolean modified = false; for(Iterator<E> it = iterator(); it.hasNext(); ){ if(!c.contains(it.next())){ it.remove(); modified = true; } } return modified; } } public static class KeySetView<K, V> extends CollectionView<K, V, K> implements Set<K>, java.io.Serializable { private static final long serialVersionUID = 7249069246763182397L; private final V value; KeySetView(ConcurrentHashMap<K, V> map, V value){ // non-public super(map); this.value = value; } /** * Returns the default mapped value for additions, * or {@code null} if additions are not supported. * * @return the default mapped value for additions, or {@code null} * if not supported */ public V getMappedValue(){ return value; } /** * {@inheritDoc} * * @throws NullPointerException if the specified key is null */ public boolean contains(Object o){ return map.containsKey(o); } /** * Removes the key from this map view, by removing the key (and its * corresponding value) from the backing map. This method does * nothing if the key is not in the map. * * @param o the key to be removed from the backing map * @return {@code true} if the backing map contained the specified key * @throws NullPointerException if the specified key is null */ public boolean remove(Object o){ return map.remove(o) != null; } /** * @return an iterator over the keys of the backing map */ public Iterator<K> iterator(){ Node<K, V>[] t; ConcurrentHashMap<K, V> m = map; int f = (t = m.table) == null ? 0 : t.length; return new KeyIterator<K, V>(t, f, 0, f, m); } /** * Adds the specified key to this set view by mapping the key to * the default mapped value in the backing map, if defined. * * @param e key to be added * @return {@code true} if this set changed as a result of the call * @throws NullPointerException if the specified key is null * @throws UnsupportedOperationException if no default mapped value * for additions was provided */ public boolean add(K e){ V v; if((v = value) == null) throw new UnsupportedOperationException(); return map.putVal(e, v, true) == null; } /** * Adds all of the elements in the specified collection to this set, * as if by calling {@link #add} on each one. * * @param c the elements to be inserted into this set * @return {@code true} if this set changed as a result of the call * @throws NullPointerException if the collection or any of its * elements are {@code null} * @throws UnsupportedOperationException if no default mapped value * for additions was provided */ public boolean addAll(Collection<? extends K> c){ boolean added = false; V v; if((v = value) == null) throw new UnsupportedOperationException(); for(K e : c){ if(map.putVal(e, v, true) == null) added = true; } return added; } public int hashCode(){ int h = 0; for(K e : this){ h += e.hashCode(); } return h; } public boolean equals(Object o){ Set<?> c; return ((o instanceof Set) && ((c = (Set<?>) o) == this || (containsAll(c) && c.containsAll(this)))); } public Spliterator<K> spliterator(){ Node<K, V>[] t; ConcurrentHashMap<K, V> m = map; long n = m.sumCount(); int f = (t = m.table) == null ? 0 : t.length; return new KeySpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n); } public void forEach(Consumer<? super K> action){ if(action == null) throw new NullPointerException(); Node<K, V>[] t; if((t = map.table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ action.accept(p.key); } } } } static final class ValuesView<K, V> extends CollectionView<K, V, V> implements Collection<V>, java.io.Serializable { private static final long serialVersionUID = 2249069246763182397L; ValuesView(ConcurrentHashMap<K, V> map){ super(map); } public final boolean contains(Object o){ return map.containsValue(o); } public final boolean remove(Object o){ if(o != null){ for(Iterator<V> it = iterator(); it.hasNext(); ){ if(o.equals(it.next())){ it.remove(); return true; } } } return false; } public final Iterator<V> iterator(){ ConcurrentHashMap<K, V> m = map; Node<K, V>[] t; int f = (t = m.table) == null ? 0 : t.length; return new ValueIterator<K, V>(t, f, 0, f, m); } public final boolean add(V e){ throw new UnsupportedOperationException(); } public final boolean addAll(Collection<? extends V> c){ throw new UnsupportedOperationException(); } public Spliterator<V> spliterator(){ Node<K, V>[] t; ConcurrentHashMap<K, V> m = map; long n = m.sumCount(); int f = (t = m.table) == null ? 0 : t.length; return new ValueSpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n); } public void forEach(Consumer<? super V> action){ if(action == null) throw new NullPointerException(); Node<K, V>[] t; if((t = map.table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ action.accept(p.val); } } } } static final class EntrySetView<K, V> extends CollectionView<K, V, Map.Entry<K, V>> implements Set<Map.Entry<K, V>>, java.io.Serializable { private static final long serialVersionUID = 2249069246763182397L; EntrySetView(ConcurrentHashMap<K, V> map){ super(map); } public boolean contains(Object o){ Object k, v, r; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>) o).getKey()) != null && (r = map.get(k)) != null && (v = e.getValue()) != null && (v == r || v.equals(r))); } public boolean remove(Object o){ Object k, v; Map.Entry<?, ?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?, ?>) o).getKey()) != null && (v = e.getValue()) != null && map.remove(k, v)); } /** * @return an iterator over the entries of the backing map */ public Iterator<Map.Entry<K, V>> iterator(){ ConcurrentHashMap<K, V> m = map; Node<K, V>[] t; int f = (t = m.table) == null ? 0 : t.length; return new EntryIterator<K, V>(t, f, 0, f, m); } public boolean add(Entry<K, V> e){ return map.putVal(e.getKey(), e.getValue(), false) == null; } public boolean addAll(Collection<? extends Entry<K, V>> c){ boolean added = false; for(Entry<K, V> e : c){ if(add(e)) added = true; } return added; } public final int hashCode(){ int h = 0; Node<K, V>[] t; if((t = map.table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ h += p.hashCode(); } } return h; } public final boolean equals(Object o){ Set<?> c; return ((o instanceof Set) && ((c = (Set<?>) o) == this || (containsAll(c) && c.containsAll(this)))); } public Spliterator<Map.Entry<K, V>> spliterator(){ Node<K, V>[] t; ConcurrentHashMap<K, V> m = map; long n = m.sumCount(); int f = (t = m.table) == null ? 0 : t.length; return new EntrySpliterator<K, V>(t, f, 0, f, n < 0L ? 0L : n, m); } public void forEach(Consumer<? super Map.Entry<K, V>> action){ if(action == null) throw new NullPointerException(); Node<K, V>[] t; if((t = map.table) != null){ Traverser<K, V> it = new Traverser<K, V>(t, t.length, 0, t.length); for(Node<K, V> p; (p = it.advance()) != null; ){ action.accept(new MapEntry<K, V>(p.key, p.val, map)); } } } } // ------------------------------------------------------- @SuppressWarnings("serial") abstract static class BulkTask<K, V, R> extends CountedCompleter<R> { Node<K, V>[] tab; // same as Traverser Node<K, V> next; TableStack<K, V> stack, spare; int index; int baseIndex; int baseLimit; final int baseSize; int batch; // split control BulkTask(BulkTask<K, V, ?> par, int b, int i, int f, Node<K, V>[] t){ super(par); this.batch = b; this.index = this.baseIndex = i; if((this.tab = t) == null) this.baseSize = this.baseLimit = 0; else if(par == null) this.baseSize = this.baseLimit = t.length; else{ this.baseLimit = f; this.baseSize = par.baseSize; } } /** * Same as Traverser version */ final Node<K, V> advance(){ Node<K, V> e; if((e = next) != null) e = e.next; for(; ; ){ Node<K, V>[] t; int i, n; if(e != null) return next = e; if(baseIndex >= baseLimit || (t = tab) == null || (n = t.length) <= (i = index) || i < 0) return next = null; if((e = tabAt(t, i)) != null && e.hash < 0){ if(e instanceof ForwardingNode){ tab = ((ForwardingNode<K, V>) e).nextTable; e = null; pushState(t, i, n); continue; }else if(e instanceof TreeBin) e = ((TreeBin<K, V>) e).first; else e = null; } if(stack != null) recoverState(n); else if((index = i + baseSize) >= n) index = ++baseIndex; } } private void pushState(Node<K, V>[] t, int i, int n){ TableStack<K, V> s = spare; if(s != null) spare = s.next; else s = new TableStack<K, V>(); s.tab = t; s.length = n; s.index = i; s.next = stack; stack = s; } private void recoverState(int n){ TableStack<K, V> s; int len; while ((s = stack) != null && (index += (len = s.length)) >= n) { n = len; index = s.index; tab = s.tab; s.tab = null; TableStack<K, V> next = s.next; s.next = spare; // save for reuse stack = next; spare = s; } if(s == null && (index += baseSize) >= n) index = ++baseIndex; } } //Task,这里删除许多同含义方法 @SuppressWarnings("serial") static final class ForEachKeyTask<K, V> extends BulkTask<K, V, Void> { final Consumer<? super K> action; ForEachKeyTask (BulkTask<K, V, ?> p, int b, int i, int f, Node<K, V>[] t, Consumer<? super K> action){ super(p, b, i, f, t); this.action = action; } public final void compute(){ final Consumer<? super K> action; if((action = this.action) != null){ for(int i = baseIndex, f, h; batch > 0 && (h = ((f = baseLimit) + i) >>> 1) > i; ){ addToPendingCount(1); new ForEachKeyTask<K, V> (this, batch >>>= 1, baseLimit = h, f, tab, action).fork(); } for(Node<K, V> p; (p = advance()) != null; ){ action.accept(p.key); } propagateCompletion(); } } } // Unsafe mechanics private static final sun.misc.Unsafe U; private static final long SIZECTL; private static final long TRANSFERINDEX; private static final long BASECOUNT; private static final long CELLSBUSY; private static final long CELLVALUE; private static final long ABASE; private static final int ASHIFT; static{ try { U = sun.misc.Unsafe.getUnsafe(); Class<?> k = ConcurrentHashMap.class; SIZECTL = U.objectFieldOffset (k.getDeclaredField("sizeCtl")); TRANSFERINDEX = U.objectFieldOffset (k.getDeclaredField("transferIndex")); BASECOUNT = U.objectFieldOffset (k.getDeclaredField("baseCount")); CELLSBUSY = U.objectFieldOffset (k.getDeclaredField("cellsBusy")); Class<?> ck = CounterCell.class; CELLVALUE = U.objectFieldOffset (ck.getDeclaredField("value")); Class<?> ak = Node[].class; ABASE = U.arrayBaseOffset(ak); int scale = U.arrayIndexScale(ak); if((scale & (scale - 1)) != 0) throw new Error("data type scale not a power of two"); ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); } catch (Exception e) { throw new Error(e); } } }