//主要的思路是,遍历二次式字符串,计算常数项、一次项、二次项的系数和,再利用求根公式得出答案
#include <iostream>
#include <string>
#include <cmath>
#include <cstdio>
using namespace std;
int main() {
string str, str2;
cin >> str;
string left = str.substr(0, str.find('=')),
right = str.substr(str.find('=') + 1);
for (int i = 0; i < right.length(); i++) { //右侧表达式异号
if (right[i] == '+') right[i] = '-';
else if (right[i] == '-') right[i] = '+';
}
str2 = left + '-' + right + "!!"; //式子归于左边
//cout<<str2<<endl;//查看整理后的式子
int a = 0, b = 0, c = 0;
for (int i = 0; i < str2.length() - 2; i++) {
if (str2[i] <= '9' && str2[i] >= '0') {
if (str2[i + 1] == '+' || str2[i + 1] == '-' || str2[i + 1] == '!') { //常数
if (i == 0) { //首项的情况
c = c + str2[i] - '0';
} else { //非首项的情况
if (str2[i - 1] == '+') c = c + str2[i] - '0';
if (str2[i - 1] == '-') c = c - str2[i] + '0';
}
} else if (str2[i + 1] == 'x' && str2[i + 2] != '^') { //一次项系数
if (i == 0) { //首项的情况
b = b + str2[i] - '0';
} else { //非首项的情况
if (str2[i - 1] == '+') b = b + str2[i] - '0';
if (str2[i - 1] == '-') b = b - str2[i] + '0';
}
} else if (str2[i + 1] == 'x' && str2[i + 2] == '^') { //二次项系数
if (i == 0) { //首项的情况
a = a + str2[i] - '0';
} else { //非首项的情况
if (str2[i - 1] == '+') a = a + str2[i] - '0';
if (str2[i - 1] == '-') a = a - str2[i] + '0';
}
}
} else if (str2[i] == 'x') {
if (i == 0) { //首项的情况
if (str2[i + 1] != '^') { //一次项x
b++;
} else if (str2[i + 1] == '^') {
a++;
}
} else { //非首项的情况
if (str2[i - 1] <= '9' && str2[i - 1] >= '0') continue; //常数已判断过
else if (str2[i - 1] == '+') {
if (str2[i + 1] != '^') { //一次项x
b++;
} else if (str2[i + 1] == '^') { //二次项x
a++;
}
} else if (str2[i - 1] == '-') {
if (str2[i + 1] != '^') { //一次项x
b--;
} else if (str2[i + 1] == '^') { //二次项x
a--;
}
}
}
}
}
//cout << "a:" << a << " " << "b:" << b << " " << "c:" << c;//查看各项系数和
if(pow(b, 2) - 4 * a * c<0){
printf("No Solution");//无解
return 0;
}
double answer1 = (-b + pow(pow(b, 2) - 4 * a * c, 0.5)) / (2 * a),
answer2 = (-b - pow(pow(b, 2) - 4 * a * c, 0.5)) / (2 * a);
printf("%.2f", min(answer1, answer2));
printf(" ");
printf("%.2f", max(answer1, answer2));
return 0;
}