求最大子数组和。输入一个整形数组,数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和,求所有子数组和的最大值。
例:输入的数组为1,-2,3,10,-4,7,2,-5。和最大的子数组为3,10,-4,7,2。因此输出该子数组的和为18。
代码如下:
方法一(暴力法)
public class test005 {
public static void main(String[] args) {
int[] a = new int[]{1,-2, 3,10, -4, 7, 2, -5};
int res = maxSum(a);
System.out.println("所有子数组和的最大值为:"+res);
}
private static int maxSum(int[] a) {
if(a==null || a.length ==0){
return 0;
}
int max = a[0];
for(int i=0; i<a.length; i++){
int temp = 0;
for(int j=i; j<a.length; j++){
temp+=a[j];
if(temp>max){
max = temp;
}
}
}
return max;
}}
算法复杂度为O(n^2)
方法二
public class test005 {
public static void main(String[] args) {
int[] a = new int[]{1,-2, 3,10, -4, 7, 2, -5};
int res = maxSum2(a);
System.out.println("所有子数组和的最大值为:"+res);
}
public static int maxSum2(int[] a){
if(null == a || a.length == 0){
return 0;
}
int tmp = a[0];
int max = a[0];
for(int i = 1; i < a.length; i++){
if(tmp < 0){
tmp = 0;
}
tmp += a[i];
max = Math.max(max, tmp);
}
return max;
}}
算法复杂度为O(n)
方法三(分治法、dp解法)
public class test005 {
public static void main(String[] args) {
int[] a = new int[]{1,-2, 3,10, -4, 7, 2, -5};
int res = maxSum3(a, 0, a.length-1);
System.out.println("所有子数组和的最大值为:"+res);
}
public static int maxSum3(int[] a, int left, int right){
if(left == right){
return a[left];
}else{
int mid = left + (right - left) / 2;
int leftMaxSum = maxSum3(a, left, mid);
int rightMaxSum = maxSum3(a, mid + 1, right);
int crossMaxSum = crossMaxSum(a, left, mid, right);
return Math.max(Math.max(leftMaxSum, rightMaxSum), crossMaxSum);
}
}
public static int crossMaxSum(int[] a, int left, int mid, int right){
int leftMaxSum = 0;
int temp = 0;
for(int i = mid; i >= left; i--){
temp += a[i];
leftMaxSum = Math.max(leftMaxSum, temp);
}
temp = 0;
int rightMaxSum = 0;
for(int i = mid + 1; i <= right; i++){
temp += a[i];
rightMaxSum = Math.max(rightMaxSum, temp);
}
return leftMaxSum + rightMaxSum;
}}
时间复杂度:O(nlogn)
欢迎交流指正~

京公网安备 11010502036488号