最小不可相交路径覆盖。
点数-最大匹配数
代码如下:
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int max_n = 2000;
const int inf = 2e9;
struct edge{
int to,next;
}E[max_n<<1];
int head[max_n];
int cnt=1;
void add(int from,int to){
E[cnt].to=to;E[cnt].next=head[from];
head[from]=cnt++;
}
int leftTo[max_n], rightTo[max_n];
int distleft[max_n], distright[max_n];
int dist;
bool seacherpath(int left_tot, int right_tot) {
fill(distleft, distleft + left_tot + 1, -1);
fill(distright, distright + right_tot + 1, -1);
queue<int> que;dist = inf;
for (int i = 1;i <= left_tot;++i)
if (leftTo[i] == -1)
que.push(i);
while (!que.empty()) {
int u = que.front();que.pop();
if (distleft[u] > dist)break;
for (int i = head[u];i;i = E[i].next) {
int v = E[i].to;
if (distright[v] != -1)continue;
distright[v] = distleft[u] + 1;
if (rightTo[v] == -1)dist = distright[v];
else {
distleft[rightTo[v]] = distright[v] + 1;
que.push(rightTo[v]);
}
}
}return dist != inf;
}
bool matchpath(int u) {
for (int i = head[u];i;i = E[i].next) {
int v = E[i].to;
if (distright[v] != distleft[u] + 1)continue;
if (distright[v] == dist && rightTo[v] != -1)continue;
distright[v] = -1;
if (rightTo[v] == -1 || matchpath(rightTo[v])) {
leftTo[u] = v;
rightTo[v] = u;
return true;
}
}return false;
}
int HK(int left_tot, int right_tot) {
fill(leftTo, leftTo + left_tot + 1, -1);
fill(rightTo, rightTo + right_tot + 1, -1);
int ans = 0;
while (seacherpath(left_tot, right_tot)) {
for (int i = 1;i <= left_tot;++i)
if (leftTo[i] == -1 && matchpath(i))
++ans;
}return ans;
}
int n;
int main(){
while(scanf("%d",&n)!=EOF){
fill(head,head+n+10,0);
cnt=1;
for (int i=1;i<=n;++i){
int u,nu;
scanf("%d:(%d)",&u,&nu);
++u;
while (nu--){
int v;scanf("%d",&v);
add(u,++v);add(v,u);
}
}
printf("%d\n",HK(n,n)/2);
}
}
京公网安备 11010502036488号