Description:

A common pastime for poker players at a poker table is to shuffle stacks of chips. Shuffling chips is performed by starting with two stacks of poker chips, S1 and S2, each stack containing C chips. Each stack may contain chips of several different colors.

The actual shuffle operation is performed by interleaving a chip from S1 with a chip from S2 as shown below for C = 5:

The single resultant stack, S12, contains 2 * C chips. The bottommost chip of S12 is the bottommost chip from S2. On top of that chip, is the bottommost chip from S1. The interleaving process continues taking the 2nd chip from the bottom of S2 and placing that on S12, followed by the 2nd chip from the bottom of S1 and so on until the topmost chip from S1 is placed on top of S12.

After the shuffle operation, S12 is split into 2 new stacks by taking the bottommost C chips from S12 to form a new S1 and the topmost C chips from S12 to form a new S2. The shuffle operation may then be repeated to form a new S12.

For this problem, you will write a program to determine if a particular resultant stack S12 can be formed by shuffling two stacks some number of times.

Input

The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.

Each dataset consists of four lines of input. The first line of a dataset specifies an integer C, (1 ≤ C ≤ 100) which is the number of chips in each initial stack (S1and S2). The second line of each dataset specifies the colors of each of the C chips in stack S1, starting with the bottommost chip. The third line of each dataset specifies the colors of each of the C chips in stack S2 starting with the bottommost chip. Colors are expressed as a single uppercase letter (A through H). There are no blanks or separators between the chip colors. The fourth line of each dataset contains 2 * C uppercase letters (A through H), representing the colors of the desired result of the shuffling of S1 and S2 zero or more times. The bottommost chip’s color is specified first.

Output

Output for each dataset consists of a single line that displays the dataset number (1 though N), a space, and an integer value which is the minimum number of shuffle operations required to get the desired resultant stack. If the desired result can not be reached using the input for the dataset, display the value negative 1 (−1) for the number of shuffle operations.

Sample Input

2
4
AHAH
HAHA
HHAAAAHH
3
CDE
CDE
EEDDCC

Sample Output

1 2
2 -1

题意:

给定两个长度为len的字符串s1和s2, 接着给出一个长度为len*2的字符串s12。

将字符串s1和s2通过一定的变换变成s12,找到变换次数

变换规则如下:

假设s1=12345,s2=67890

变换后的序列 s=6172839405

如果s和s12完全相等那么输出变换次数

如果不完全相等,s的前半部分作为s1,后半部分作为s2,重复上述过程。

解题思路:

题意说的很明显了,直接暴力模拟就可以了

#pragma GCC optimize("O2")
#pragma G++ optimize("O2")

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>

using namespace std;
const int N = 110;

void trans(string &s1, string &s2, string &ss)  // 合并成一个字符串
{   
    ss.clear();
    int len = s1.size();
    for(int i=0; i < len; i++)
    {
        ss.push_back(s2[i]);
        ss.push_back(s1[i]);
    }
}
void divide(string &s1, string &s2, string &ss)     // 拆分成两个字符串
{
    s1.clear(); 
    s2.clear();
    int len = ss.size();
    for(int i=0; i<len/2; i++)
        s1.push_back(ss[i]);
    for(int i=len/2; i < len; i++)
        s2.push_back(ss[i]);
}


int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);

    int t;  cin >> t;
    int cnt = 1;
    while(t--)
    {
        int len;    cin >> len;
        string s1, s2, s12;
        cin >> s1 >> s2 >> s12;
        string s, ss;
        s = s1 + s2;
        if(s == s12)
            cout << cnt++ << ' ' << 0 << '\n';
        else
        {
            int ans = 0;
            while(true)
            {
                trans(s1, s2, ss);
                // cout << "s1 = " << s1 << ' ' << "s2 = " << s2 << endl;
                // cout << "ss = " << ss << endl;
                if(ss == s)     // 判断是否会重复出现,如果会说明不行
                {
                    ans = -1;
                    break;
                }
                ans ++;
                if(ss == s12)   break;
                else divide(s1, s2, ss);
            }
            cout << cnt++ << ' ' << ans << endl;
        }
        
    }    

    return 0;
}