牛客练习赛72-C brz的序列 (下凸壳,斜率优化)
题面:
思路:
我们可以推理出如下规律:
选择任意,可以使变为首项为,尾项为的等差数列。
那么本题转化为了选择若干个,作为等差数列的首尾相,使总和最小。
为了更好的解决该问题,我们把数,转为二维平面中坐标为 的点,
那么根据等差数列的性质可以得知,等差数列的公差为数列中两项对应在二维平面上两点的斜率。
通过分析可以发现,将点集维护成下凸壳(凸包的下半部分,见下图)的形式可以使答案最优。
蓝色的点是下凸壳,红色的点是应该从点集中踢出的点。
那么我们用一个栈来维护递增的斜率即可。
代码:
#include <iostream> #include <cstdio> #include <algorithm> #include <bits/stdc++.h> #define ALL(x) (x).begin(), (x).end() #define sz(a) int(a.size()) #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), '\0', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define chu(x) if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c)) #define du2(a,b) scanf("%d %d",&(a),&(b)) #define du1(a) scanf("%d",&(a)); using namespace std; typedef long long ll; ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;} ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;} ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;} void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;} inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;} void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '\n' : ' ');}} void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '\n' : ' ');}} const int maxn = 1000010; const int inf = 0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ #define DEBUG_Switch 0 int n; ll a[maxn]; pll st[maxn]; int main() { #if DEBUG_Switch freopen("D:\\code\\input.txt", "r", stdin); #endif //freopen("D:\\code\\output.txt","w",stdout); n = readint(); repd(i, 1, n) { a[i] = readint(); } if (n == 1) { cout << fixed << setprecision(10) << a[1] << endl; return 0; } int l = 0; int r = 0; repd(i, 1, n) { while (r - l > 1 && ( a[i] - st[r].first) * (i - st[r - 1].second ) < (a[i] - st[r - 1].first ) * (i - st[r].second )) { r--; } st[++r] = mp(a[i], i); } ll ans = 0ll; ll temp = 0ll; repd(i, l + 2, r) { ans += (st[i].se - st[i - 1].se + 1) * (st[i].fi + st[i - 1].fi); if (i >= l + 2 && i <= r - 1) temp += st[i].fi; } long double out = 0.5 * ans; out -= temp; cout << fixed << setprecision(10) << out << endl; return 0; }