Time Limit: 1000MS | Memory Limit: 65536KB | 64bit IO Format: %I64d & %I64u |
Description
Create a code to determine the amount of integers, lying in the set [ X; Y] and being a sum of exactly K different integer degrees of B.
Example. Let X=15, Y=20, K=2, B=2. By this example 3 numbers are the sum of exactly two integer degrees of number 2:
17 = 2 4+2 0,
18 = 2 4+2 1,
20 = 2 4+2 2.
18 = 2 4+2 1,
20 = 2 4+2 2.
Input
The first line of input contains integers X and Y, separated with a space (1 ≤ X ≤ Y ≤ 2 31−1). The next two lines contain integers K and B (1 ≤ K ≤ 20; 2 ≤ B ≤ 10).
Output
Output should contain a single integer — the amount of integers, lying between X and Y, being a sum of exactly K different integer degrees of B.
Sample Input
input | output |
---|---|
15 20 2 2 | 3 |
Source
Problem Source: Rybinsk State Avia Academy其实是做完这个题才做的nefu的题的,论文讲的太粗狂了,看了标称才写对==我上午超级不理解的地方是为什么当发现当前位>1时,我们加的是f[i+1][k-tot]?为啥这货就代表全都选啊啊啊。我们想想f[i][j]的递推表达式是f[i][j]=f[i-1][j]+f[i-1][j-1]前者表示左子树的根节点是0,后者表示右子树的根节点是1,所以f[i+1][j]就表示长度为i时的所以情况啦!
/***********
ural1057
2016.2.16
396 1ms G++ 4.9
***********/
#include <iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
int f[32][32];
void init()
{
f[0][0]=1;
for(int i=1;i<=31;i++)
{
f[i][0]=f[i-1][0];
for(int j=1;j<=i;j++) f[i][j]=f[i-1][j]+f[i-1][j-1];
}
}
int cal(int n,int k,int b)
{
vector<int>c;
int ans=0,tot=0;
while(n)
{
c.push_back(n%b);
n/=b;
}
for(int i=c.size()-1;i>=0;i--)
{
if(c[i]==1)
{
ans+=f[i][k-tot];
tot++;
if(tot>=k) break;
}
if(c[i]>1)
{
ans+=f[i+1][k-tot];
break;
}
}
if(tot==k) ans++;
return ans;
}
int main()
{
// freopen("cin.txt","r",stdin);
init();
int x,y,b,k;
// printf("15,4 %d\n",change(15,4));
while(~scanf("%d%d",&x,&y))
{
scanf("%d%d",&k,&b);
printf("%d\n",cal(y,k,b)-cal(x-1,k,b));
}
return 0;
}